По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Подключения прибора Для подключения прибора к измеряемому потоку используются разъемы на задней (или верхней) стенке прибора: Tx OUTliUT выход, или передача прибора подключить к Rx (прием) измеряемого потока; Rx INliUT вход, или прием прибора подключить к Tx (передача) измеряемого потока. На левой стенке расположен разъем EXT PWR для подключения адаптера внешнего питания. Прибор продолжительное время (несколько часов) может работать от встроенных аккумуляторов. Включение прибора Нажать клавишу <On> - через 2-3 секунды прибор включится. В правом верхнем углу указано название текущего меню. В нижней части дисплея указано назначение функциональных клавиш в данном режиме (смотри рисунок). При включении прибора отображается главное меню "Main menu". Если вы не знаете, в каком меню находитесь и что делать дальше, нажмите кнопку <Main menu>. Далее, следуйте инструкции. Контроль потока и подключения В главном меню (Main menu) нажать кнопку <-more-> (клавиша S6), до появления в левом нижнем углу пункта меню <Monit>. Выбрав данный пункт (клавишей S1), вы попадаете в меню мониторинга, где возможно контролирование потока и отдельного канального интервала. В правом верхнем углу отображается состояние потока: No signal нет сигнала на входе прибора. Возможно перепутаны прием/передача оборудования, или неисправен соединительный шнур; AIS сигнал удаленной аварии. На дальнем конце измеряемый поток не нагружен; Frame sync loss потеря цикловой синхронизации. Прибор принимает не тот сигнал, который передает. Возможно отсутствует шлейф на дальнем конце, или подключен не тот поток. *Words* - "слова". Аварии отсутствуют - прибор принимает передаваемый им сигнал и готов к проведению измерений. Проведение измерений Для измерения потока E1 необходимо выполнить следующее: Выйти в главное меню нажатием кнопки <MAIN MENU> Нажать Menu1, основные параметры, убедиться, что выставлены параметры: Первый столбец: [Mode] режим, возможны значения: RX/TX прием/передача, измерения по завороту; RX прием, измерения на рабочем потоке, параллельно; THROUGH через, поток пропускается через прибор; DELAY. Для измерений по завороту необходимо выбрать режим RX/TX [Interface] - G.703 интерфейс G.703; [Line code] - HDB3линейный код HDB3; [Framing] - liCM30формат кадра ИКМ-30; liCM-31 с использованием 16-го ки; OFFбез цикловой структуры. Рекомендации по выбору режима: выставить PCM-31. Если прибор не может засинхронизироваться, возникает аварийная сигнализация переключить в режим PCM-30. При невозможности проведения измерений в данном режиме возможно(но не рекомендуется) проведение измерений без цикловой структуры (режим OFF). [Termination] 75/120Ω - сопротивление интерфейса 75/120 Ом; [Tx Clc src] - INTERNисточник синхронизации передачи внутренний или FROM RX от сигнала приема; [Kblis] - 2048 скорость передачи 2048 кбит/с; Второй столбец: [V.11 slot] - OFF ввод/вывод данных в какой-либо канальный интервал посредством интерфейса V.11 откл.; [Rx slots] - канальные интервалы, по которым производится измерения, принимает значения: OFF откл; 1(С1) - 1 канальный интервал (можно использовать любой ки от 1 до 31, не заблокированный в данном режиме); nx64 несколько канальных интервалов, в данном режиме возможен выбор нескольких или всех канальных интервалов для проведения измерений. При выборе пункта <nx64> открывается меню "Rx Slots (BERT)", в котором производится выбор канальных интервалов: ALL выбрать все Clear очистить выбор (действие, обратное предыдущему) Select выбрать ки, обозначенный курсором De-select отменить выбор ки, обозначенного курсором Return возврат в предыдущее меню Рекомендации по выбору ки: как правило, измерения проводятся по полному потоку, то есть должны быть выбраны все канальные интервалы, последовательность действий: <Rx slots> <nx64> <ALL> <Return> [Rx audio] OFF канальный интервал, который будет прослушиваться через встроенный динамик. Возможно указание любого ки, или отключение опции.На ход измерений не влияет; [Rx signaling] OFF; [Tx slots] - канальные интервалы, по которым передается тестовая последовательность. Возможны режимы: OFF - откл. передача не осуществляется; USER - по выбору пользователя; AS RX - в соответствии с приемом. Выбраны те канальные интервалы, которые контролируются по приему; IDLE - свободно, передается последовательность IDLE (задается в следующем меню, обозначает неиспользуемые ки); 1(С1) - 1 канальный интервал (можно использовать любой ки от 1 до 31, не заблокированный в данном режиме). Рекомендации по выбору ки: рекомендуется выбрать режим <AS RX> Примечание: в режиме Framing OFF параметры второго столбца отсутствуют. В режиме Framing PCM31 параметр Rx signaling отсутствует. Перейти в следующее меню menu2, параметры тестовой последовательности: Параметры по умолчанию: [Idle liattern] 0110 1010; [Bert liattern] 215 -1; [Bert signaling] 1010; [Idle signaling] 1010; Bits/Block - 1000; NFAS/NMFAS - norm; Tx logic - norm; Rx logic - norm. Некоторые параметры могут отсутствовать в зависимости от выбора режима Framing. Ничего изменять не нужно. Перейти в следующее меню menu3, проконтролировать параметры: [Current test] - текущее измерение, при многократных измерениях для сохранения результатов номер измерения следует поменять на следующий. Например, если произведено измерение под № 5, то при следующем измерении следует установить №6. Тогда в ячейке №5 результаты сохранятся; [Timer] - On таймер включен. В меню Timer необходимо задать продолжительность тестирования, для этого необходимо навести указатель на пункт Timer, нажать <edit> - откроется timer menu: [Start time] - manual запуск теста - вручную; [Duration] - продолжительность. Userзадана пользователем, далее необходимо указать продолжительность тестирования: 0 days (дни) 0 hrs (часы) 15 mins (минуты). При необходимости возможен режим Continпродолжительный, до остановки пользователем. Далее нажать Return, чтобы вернуться в предыдущее меню. [Autolirint] - Off - автоматическая печать выключена; G.821 - ITU-T - контроль по протоколу G.821 включен, согласно рекомендации ITU-T; [Alarms] All on - контроль аварий все аварии; [Resolution] - HRS/MINS - частота записи результатов часы/минуты; [Beelier] - Off; [Err inject] - Ratio - ввод ошибок. Нажать кнопку <Run> - запуск. Начнутся измерения. На экране появляется информация о производимых измерениях: правая часть экрана краткая информация о параметрах измерений, левая часть экрана надпись ОКили присутствующие аварии и зафиксированные ошибки. RX/TX - режим измерений; G.703, liCM31 - основные параметры измерений; Rx - звездочкой обозначены измеряемые канальные интервалы, если стоит точка канальный интервал пропускается; Total seconds - время в секундах, прошедшее с начала измерений; Bit err ratio - коэффициент битовых ошибок. Перенос результатов измерений в ПК По завершении измерений на экране отображаются краткие результаты. Для переноса измерений на компьютер необходимо: Выключить прибор и перенести его к месту установки компьютера. Подключить прибор к компьютеру, для этого: порт V.24/RS-232 прибора (с правой стороны) подключить через переходной соединительный кабель к com-порту компьютера. Запустить на компьютере программу HyperTerminal. (В программе HyperTerminal должен быть задан номер com-порта, к которому подключен прибор и параметры соединения: скорость 9600 бит/с; биты данных 8, четность нет; стоповые биты 1; управление потоком Xon/Xoff) Включить прибор. Найти пункт меню "Memory". Если его нет, можно нажать кнопку <more>, для отображения других возможностей меню до появления нужной кнопки. В меню "Memory" отображаются все сохраненные результаты, установить курсор на нужном пункте (можно определить по дате и времени измерений) Нажать <Results>, на экране появятся результаты измерений, нажать кнопку <Print>, результаты будут переданы в окно HyperTerminal. Из окна программы результаты можно скопировать и вставить в любой текстовый документ: WordPad (блокнот) или Microsoft Word. _____________________________________________________________________________ ACTERNA E1 SERVICE TESTER EST-125 09:32 11 Mar 2011 _____________________________________________________________________________ Printout of menu settings *Setup Menu 1* Mode RX/TX Interface G.703 Line code HDB3 Framing PCM31C Termination 75/120 Ohm Tx Clk source INTERN kbps 2048 V.11 OFF Rx slots BERT-Rx 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Rx audio OFF Tx slots AS RX *Setup Menu 2* Idle pattern 0000 0000 BERT pattern 2^15-1 Bits/Block 1000 Rx logic NORM Tx logic NORM *Setup Menu 3* Autoprint OFF G.821 ITU-T Multiframe ITU-T Alarms USER Resolution HRS/MINS *Alarm Display* AIS ON Fr Sync ON All ones ON All zeros ON Patt loss ON Patt Inv Slip ON Dist Fr ON Bit error ON CRC err ON FAS err ON Code err ON _____________________________________________________________________________ ACTERNA E1 SERVICE TESTER EST-125 09:33 11 Mar 2011 _____________________________________________________________________________ Printout of test results for test number 2 Start time 09:25 10 Mar 2011 Stop time 09:25 11 Mar 2011 Total test time (seconds) 86400 Line rate 2047994 Total code errors received 0 Total mean Code Error Ratio 0.000E 0 Bit rate 1983995 Total bits received 1.174E 11 Total errors received 0 Total mean Bit Error Ratio 0.000E 0 Total blocks received 1.174E 8 Total block errors received 0 Total mean Block Error Ratio 0.000E 0 Seconds of no signal 0 Seconds of AIS Seconds of pattern sync loss 0 Seconds of Pattern Inverted 0 Seconds of all ones 0 Seconds of all zeros 0 Seconds of slip 0 Seconds of frame sync loss 0 Seconds of distant frame alarm 0 Total FAS word errors 0 Total number of frames 0 Total number of frames 6.912E 8 Total mean FAS word error ratio 0.000E 0 Total CRC word errors 0 Available time 86400 100.00000% Unavailable time 0 0.00000% Error free seconds 86400 100.00000% Errored seconds PASS 0 0.00000% Severely errored seconds PASS 0 0.00000% Severely errored seconds PASS 0 0.00000%
img
Telnet - это протокол прикладного уровня в модели TCP / IP. Этот протокол позволяет устройству (клиенту Telnet) подключаться к удаленному хосту (серверу Telnet), используя TCP в качестве протокола транспортного уровня. Обычно сервер Telnet прослушивает соединения Telnet на TCP-порту 23. Устройство, на котором работает VRP, может функционировать как клиент Telnet и сервер Telnet. Например, вы можете войти в систему и использовать его в качестве клиента Telnet для подключения к другому устройству через Telnet. На рисунке 1 показан такой сценарий, в котором R1 функционирует как сервер Telnet и клиент Telnet для ПК и R2 соответственно. Вход в устройство через Telnet Чтобы войти в устройство с ПК под управлением операционной системы Windows, выберите "Пуск"> "Выполнить" и выполните команду telnet ip-address. Например, чтобы войти в устройство с IP-адресом 10.137.217.177, введите команду telnet 10.137.217.177 и нажмите OK (рис. 2). В появившемся диалоговом окне входа в систему введите имя пользователя и пароль. Если аутентификация прошла успешно, отобразится приглашение командной строки <Huawei>. Управление файлами VRP использует файловую систему для управления всеми файлами и каталогами на устройстве. Базовые концепции Файловая система VRP используется для создания, удаления, изменения, копирования и отображения файлов и каталогов, которые хранятся во внешнем хранилище устройства, которое для маршрутизаторов Huawei представляет собой флэш-память и SD-карты, а для коммутаторов Huawei - флэш-память и CF-карты. Некоторые устройства также используют внешние USB-диски в качестве дополнительных устройств хранения. На внешнем запоминающем устройстве могут храниться файлы различных типов, включая файл конфигурации, файл системного программного обеспечения, файл лицензии и файл исправления (patch). Файл системного программного обеспечения является файлом операционной системы VRP и должен храниться в формате .cc в корневом каталоге внешнего запоминающего устройства. Содержимое этого файла загружается в память устройства и запускается при включении устройства. Резервное копирование файла конфигурации В некоторых сценариях, таких как обновление системы, может потребоваться создать резервную копию файла конфигурации устройства в определенной папке на внешнем запоминающем устройстве. В следующем примере описан процесс резервного копирования, предполагая, что вы уже вошли в R1 через ПК (рис. 3). Задание файла для резервного копирования Команда dir [/all] [filename | directory] отображает файлы по указанному пути. all указывает,что отображаются все файлы и каталоги в текущем пути, включая любые файлы в корзине. filename указывает файл. Directory задает каталог. Чтобы проверить файлы и каталоги в корневом каталоге флэш-памяти R1, выполните следующую команду: В этом примере будет создана резервная копия файла конфигурации vrpcfg.zip размером 1351 байт. Создание каталога Запустите команду mkdir directory, чтобы создать каталог. directory определяет имя создаваемого каталога (включая путь к нему). Чтобы создать каталог backup в корневом каталоге (root) флэш-памяти устройства, выполните следующую команду: Копирование и переименование файла конфигурации Запустите команду copy source-filename destination-filename, чтобы скопировать файл. source-filename (имя-источника) указывает путь и имя исходного файла. destination-filename (имя-назначения) указывает путь и имя файла назначения. Чтобы скопировать файл конфигурации vrpcfg.zip в каталог backup и переименовать файл в vrpcfgbak.zip, выполните следующую команду: Проверьте, что файл был скопирован. Выполните команду cd directory, чтобы изменить текущий рабочий каталог. Чтобы проверить, было ли успешно выполнено резервное копирование файла конфигурации, выполните следующие команды: Выходные данные команды показывают, что каталог backup содержит файл vrpcfgbak.zip, что означает, что файл конфигурации vrpcfg.zip был скопирован. Передача файлов TFTP Trivial File Transfer Protocol (TFTP) - это простой протокол прикладного уровня в модели TCP / IP, используемый для передачи файлов. Он использует UDP в качестве протокола транспортного уровня с портом 69. TFTP работает в модели клиент/сервер. Маршрутизаторы и коммутаторы Huawei работают только как клиенты TFTP. На рис. 4 ПК функционирует как сервер TFTP, а маршрутизатор - как клиент TFTP. TFTP используется для передачи файла системного программного обеспечения VRP с ПК на маршрутизатор. Команда tftp tftp-server {get / put} source-filename [destination-filename] настраивает TFTP для передачи файлов. tftp-server задает IP-адрес сервера TFTP. get указывает, что файл должен быть загружен с сервера TFTP на клиент TFTP. put указывает, что файл должен быть загружен с клиента TFTP на сервер TFTP. source-filename указывается имя файла-источника. destination-filename указывает имя файла назначения. Чтобы загрузить файл системного программного обеспечения VRP devicesoft.cc с компьютера на маршрутизатор выполните следующую команду: TFTP прост в реализации и использовании, но не обеспечивает никакой безопасности (например, он не проверяет учетные данные пользователя или не шифрует данные). Любой желающий может загружать или скачивать файлы на серверы TFTP или с них, что делает TFTP подходящим для передачи файлов только в защищенных сетевых средах. Для повышения безопасности используйте FTP или SFTP. FTP Подобно TFTP, протокол передачи файлов (FTP) является протоколом прикладного уровня в модели TCP / IP. Он использует TCP в качестве протокола транспортного уровня с портом 21. Маршрутизаторы и коммутаторы Huawei, на которых работает VRP, могут функционировать как FTP-серверы, а также как FTP-клиенты. По сравнению с TFTP FTP более безопасен, так как для установки FTP-соединения требуются учетные данные пользователя. Кроме того, FTP позволяет удалять файлы, а также создавать и удалять каталоги файлов на FTP-сервере. На рисунке 5 ПК функционирует как FTP-сервер, а маршрутизатор - как FTP-клиент. FTP используется для передачи файла системного программного обеспечения VRP с ПК на маршрутизатор. Запустите команду ftp host-ip [port-number], чтобы создать FTP-соединение. hostip указывает IP-адрес FTP-сервера. port-number указывает номер порта FTP-сервера. По умолчанию используется TCP-порт 21. Запустите команду dir, чтобы проверить список файлов на FTP-сервере. Подобно TFTP, FTP использует ключевые слова get и put: get в команде get source-filename [destination-filename] указывает, что файл должен быть загружен с FTP-сервера на FTP-клиент, и put в команде put source-filename [destinationfilename] указывает, что файл должен быть загружен с FTP-клиента на FTP-сервер. В этом примере команда get vrpsoft.cc devicesoft.cc запускается для загрузки файла программного обеспечения системы VRP vrpsoft.cc с FTP-сервера (ПК) на FTP-клиент (маршрутизатор) и переименования файла devicesoft.cc. FTP передает данные в виде открытого текста. Для повышения безопасности используйте Secure File Transfer Protocol (SFTP) для передачи файлов. SFTP шифрует данные и защищает целостность передаваемых данных. Удаление файла Возможно, вам придется время от времени удалять файлы, чтобы освободить место для хранения. Для этого выполните команду delete [/unreserved] [/force] filename. /unreserved указывает, что файл, подлежащий удалению, не может быть восстановлен. / force указывает, что для удаления указанного файла подтверждение не требуется. filename указывает имя файла, подлежащего удалению. Если параметр / unreserved не настроен, файл, подлежащий удалению, перемещается в корзину и может быть восстановлен с помощью команды undelete. Файл по-прежнему будет занимать место для хранения внутри корзины. Команда reset recycle-bin удаляет все файлы в корзине. После удаления файлов из корзины они не могут быть восстановлены. Чтобы окончательно удалить файл, например abcd.zip, выполните следующие операции: Настройка файла запуска системы Файлы запуска включают файл системного программного обеспечения и другие файлы, загруженные с внешнего запоминающего устройства в память для запуска устройства. Перед установкой следующего файла запуска выполните команду display startup, чтобы проверить файлы запуска, используемые для следующего запуска (next startup). Вывод команды показывает, что файл системного программного обеспечения software.cc будет использоваться для следующего запуска устройства. Команда startup system-software system-file устанавливает файл системного программного обеспечения для следующего запуска. system-file указывает файл. Чтобы использовать файл devicesoft.cc для следующего запуска, выполните следующую команду: Чтобы проверить, вступил ли этот параметр в силу, выполните команду display startup Вывод команды показывает, что файл системного программного обеспечения для следующего запуска был установлен в devicesoft.cc.
img
Виртуализация часто применяется для поиска более простого способа решения некоторых проблем, отмеченных в начальных статьях этой темы, таких как разделение трафика. Как и все в мире сетевой инженерии, здесь есть компромиссы. На самом деле, если вы не нашли компромисс, вы плохо искали. В этом разделе будут рассмотрены некоторые (хотя, конечно, не все) различные компромиссы сложности в области виртуализации сети. Основой этого обсуждения будет триада компромиссов сложности: Состояние: количество состояний и скорость, с которой изменяется состояние в сети (особенно в плоскости управления). Оптимизация: оптимальное использование сетевых ресурсов, включая такие вещи, как трафик, следующий по кратчайшему пути через сеть. Поверхность: количество слоев, глубина их взаимодействия и широта взаимодействия. Поверхности взаимодействия и группы связей общих рисков Каждая система виртуализации, когда-либо задуманная, реализованная и развернутая, создает в некотором роде общий риск. Например, рассмотрим одну линию, по которой передается несколько виртуальных каналов, каждый из которых передает трафик. Должно быть очевидным (на самом деле тривиальным) наблюдение, что в случае отказа одного физического канала произойдет сбой всех виртуальных каналов. Конечно, вы можете просто перенаправить виртуальные каналы на другой физический канал. Правильно? Может быть, а может и нет. Рисунок 1 иллюстрирует это. С точки зрения A и D, есть две линии, доступные через B и C, каждая из которых обеспечивает независимое соединение между хостом и сервером. В действительности, однако, и провайдер 1, и провайдер 2 приобрели виртуальные каналы через единственное соединение у провайдера 3. Когда единственное соединение в сети провайдера 3 выходит из строя, трафик может быть перенаправлен с основного пути через провайдера 1 на путь через провайдера. 2, но поскольку оба канала используют одну и ту же физическую инфраструктуру, ни одна из них не сможет передавать трафик. Говорят, что эти два звена в этой ситуации разделяют одну общую судьбу, потому что они являются частью Shared Risk Link Group (SRLG). Можно найти и обойти SRLG или ситуации с shared fate, но это усложняет плоскость управления и/или управление сетью. Например, невозможно обнаружить эти shared fate без ручного тестирования различных ситуаций отказа на физическом уровне или изучения сетевых карт, чтобы найти места, где несколько виртуальных каналов проходят по одному и тому же физическому каналу. В ситуации, описанной на рисунке 1, найти ситуацию с shared fate было бы почти невозможно, поскольку ни один из провайдеров, скорее всего, не скажет вам, что использует линию от второго провайдера, показанного на рисунке как провайдер 3, для предоставления услуг. Как только эти ситуации с shared fate обнаружены, необходимо предпринять некоторые действия, чтобы избежать серьезного сбоя в работе сети. Обычно для этого требуется либо вводить информацию в процесс проектирования, либо усложнять дизайн, либо вводить информацию в плоскость управления (см. RFC8001 в качестве примера типа сигнализации, необходимой для управления группами SRLG в плоскости управления, спроектированной трафиком). По сути, проблема сводится к следующему набору утверждений: Виртуализация - это форма абстракции. Абстракция удаляет информацию о состоянии сети с целью снижения сложности или предоставления услуг за счет реализации политики. Любое нетривиальное сокращение информации о состоянии сети так или иначе снизит оптимальное использование ресурсов. Единственным противодействием конечному состоянию из этих трех, является протекание информации через абстракцию, поэтому можно восстановить оптимальное использование ресурсов - в этом случае отказ одного канала не вызывает полного отказа потока трафика через сеть. Единственное решение, таким образом, - сделать абстракцию сквозной абстракцией, что снизит эффективность абстракции при контроле области действия состояния и реализации политики. Поверхности взаимодействия и наложенные плоскости управления В сетевой инженерии принято накладывать друг на друга два протокола маршрутизации или две плоскости управления. Хотя это не часто рассматривается как форма виртуализации, на самом деле это просто разделение состояния между двумя различными плоскостями управления для контроля количества состояний и скорости изменения состояний, чтобы уменьшить сложность обеих плоскостей управления. Это также часто встречается при запуске виртуальных наложений в сети, поскольку между головным и хвостовым узлами туннеля будет существовать нижележащая плоскость управления, обеспечивающая достижимость, и плоскость управления наложением, обеспечивающая достижимость в виртуальной топологии. Две наложенные друг на друга плоскости управления будут взаимодействовать иногда неожиданным образом. Для иллюстрации используется рисунок 2. На рисунке 2: Каждый маршрутизатор в сети, включая B, C, D и E, использует две плоскости управления (или, если это проще, протоколы маршрутизации, отсюда протокол 1 и протокол 2 на рисунке). Протокол 1 (оверлей) зависит от протокола 2 (базовый) для обеспечения доступности между маршрутизаторами, на которых работает протокол 1. Протокол 2 не содержит информации о подключенных устройствах, таких как A и F; вся эта информация передается в протоколе 1. Протокол 1 требует гораздо больше времени для схождения, чем протокол 2. Более простой путь от B к E проходит через C, а не через D. Учитывая этот набор протоколов, предположим, что C на рисунке 2 удален из сети, двум управляющим плоскостям разрешено сходиться, а затем C снова подключается к сети. Каков будет результат? Произойдет следующее: После удаления C сеть снова объединится с двумя путями в локальной таблице маршрутизации в B: F доступен через E. E доступен через D. После повторного подключения C к сети протокол 2 быстро сойдется. После повторной конвергенции протокола 2 лучший путь к E с точки зрения B будет через C. Следовательно, у B теперь будет два маршрута в локальной таблице маршрутизации: F доступен через E. E достижимо через C. B перейдет на новую информацию о маршрутизации и, следовательно, будет отправлять трафик к F через C до того, как протокол 1 сойдется, и, следовательно, до того, как C узнает о наилучшем пути к F. С момента, когда B начинает пересылку трафика, предназначенного для F в C, и момента, когда протокол 1 сойдется, трафик, предназначенный для F, будет отброшен. Это довольно простой пример неожиданного взаимодействия наложенных протоколов. Чтобы решить эту проблему, вам необходимо ввести информацию о состоянии конвергенции протокола 1 в протокол 2, или вы должны каким-то образом заставить два протокола сходиться одновременно. В любом случае вы по существу добавляете состояние обратно в два протокола, чтобы учесть их разницу во времени конвергенции, а также создавая поверхность взаимодействия между протоколами. Примечание: Этот пример описывает фактическое взаимодействие конвергенции между IS-IS и BGP, или протоколом Open Shortest Path First (OSPF) и BGP. Чтобы решить эту проблему, более быстрый протокол настроен на ожидание, пока BGP не сойдется, прежде чем устанавливать какие-либо маршруты в локальной таблице маршрутизации.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59