По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Model-View-Controller - популярный шаблон программирования, где логика приложения делится на три различных компонента. В этой статье расскажем о роли компонентов архитектуры MVC, начнем с короткой истории, а далее покажем, как её можно использовать в приложении. История паттерна Model View Controller Модель MVC была впервые представлена в 1979 году учёным Трюгве Миккьелем Хейердалом Реенскаугом. Он хотел придумать решение, как разбить сложное пользовательское приложение на более мелкие управляемые компоненты. Шаблон MVC был впервые использован в языке программирования Small Talk. Изначально шаблоне хотели назвать «Model-View-Editor», но затем оно было изменено на «Model-View-Controller». В 1980-х и начале 90-х годов шаблон MVC использовался главным образом в настольных приложениях. Но к концу 1990-х годов она стала довольно популярной в разработке веб-приложений. В современных веб-приложениях шаблон MVC является популярным архитектурным дизайном для организации кода. Ниже приведен список нескольких популярных веб-фреймворков, использующих шаблон MVC: Ruby on Rails ASP.NET MVC Laravel Angular Какие три компонента включает в себя MVC? Шаблон программирования MVC состоит их трёх следующих компонентов: Model – отвечает за логику данных, лежащую в основе приложения View – это видимая часть приложения, то с чем взаимодействует пользователь Controller – работает как мозг приложения и обеспечивает связь между моделью и видом Как шаблон MVC работает в веб-приложении? Чтобы лучше понять, как работает шаблон MVC, лучше всего показать его в демонстрационном приложении. Это приложение стека MERN (MongoDB, Express, React, Node) своего рода помощник менеджера офиса и отображает таблицу недавно нанятых тренеров средней школы. Он также показывает, какие тренеры не сдали тесты на туберкулез, не прошли вакцинацию от Covid, не заполнили резюме и не прошли проверку. Менеджер может отправлять напоминания по электронной почте тем тренерам, у которых отсутствуют документы. Компонент Model Модель отвечает за логику данных нашего приложения. Мы используем MongoDB для базы данных тренеров. Для начала определяем свойства, которые будут применены к каждому тренеру в базе данных. У каждого тренера есть свойства name, email, program, application, backgroundCheck, tbTest и covidTest. const coachSchema = new Schema({ name: { type: String, trim: true, maxLength: 32, required: true }, email: { type: String, trim: true, maxLength: 32, required: true, unique: true }, program: { type: String, trim: true, maxLength: 32, required: true }, application: { type: Boolean, required: true }, backgroundCheck: { type: Boolean, required: true }, tbTest: { type: Boolean, required: true }, covidTest: { type: Boolean, required: true } }, { timestamps: true }) type: Boolean представляет значение true или false для свойств приложения, backgroundCheck, tbTest и covidTest. Если у тренера одно из этих четырех свойств, помечены как false, это означает, что они не завершили процесс найма. Создаем семь записей для нашей базы данных тренеров, и эта информация хранится в MongoDB Atlas. Ниже приведен пример одной из записей базы данных. Компонент "контроллер"" будет взаимодействовать с базой данных и получать необходимую информацию для отправки компоненту представление. Компонент View Компонент View (вид, представление или вью) отвечает за все визуальные аспекты приложения. Для отображения данных пользователю мы использовали React. При первой загрузке приложения на экране отображается приветственное сообщение. При нажатии кнопки «View Dashboard» происходит переход к таблице тренеров и списку отсутствующих документов. Компонент Вид не взаимодействует напрямую с базой данных, поскольку это делает наш контроллер. Контроллер предоставляет эту информацию компоненту представление, чтобы ее можно было отобразить на странице. Вот как выглядит код, когда представление выполняет вызов выборки (fetch) для получения данных от контроллера: await fetch('https://mvc-project-backend.herokuapp.com/coaches') Затем мы используем метод map(), чтобы пройтись по списку тренеров и отобразить их имена, адреса электронной почты и программу в виде таблицы. coachData.map(data => ( <tr key={data._id}> <td>{data.name}</td> <td>{data.email}</td> <td>{data.program}</td> </tr> )) Для отображения раздела отсутствующих документов мы отправляем запрос к бэкнэду и получием список тренеров, которые не заполнили анкету, не сдали тесты на туберкулез, не привиты от Covid и не прошли проверки. Для отображения имен для каждой категории снова используется метод map(). Если нажать кнопку «Send reminder email», эта информация будет отправлена React-ом на бэкэнд. Контролер отвечает за отправку сообщения электронной почты и обмен информацией с компонентом представление о том, отправилось ли сообщение. На основе информации, которую он получает от контроллера, во View отображается сообщение об успехе или сообщение об отказе. Компонент Controller Контроллер взаимодействует с компонентами «Модель» и «Представление» и выполняет все логические операции для нашего приложения. Этот раздел кода был построен в Node.JS и Express. Контролер получает полный список тренеров из «Модели» и отправит эту информацию в «Представление». Контролер также отвечает за фильтрацию через «Модель» и предоставление списка тренеров, которые не сдали необходимые документы. Все эти данные отправляются в «Представление», чтобы их можно было отобразить пользователю. Что касается функциональности электронной почты, то «Контролер» перед отправкой проверяет валидность адреса электронной почты. Для отправки электронных писем использована Nodemailer: transporter.sendMail(mailOptions, (err) => { if (err) { console.log(`Applications: There was an error sending the message: ${err}`) res.json({ status: 'Email failure' }) } else { console.log(`Applications Success: Email was sent`) res.json({ status: "Email sent" }); } }) Если сообщение электронной почты успешно отправлено, пользователь получает уведомление, и сообщение электронной почты отображается в почте демонстрационной учетной записи. Если при отправке сообщения возникает ошибка, то «Контроллер» посылает эту информацию в «Вид», чтобы пользователю отобразилось уведомление об ошибке. Заключение А в заключение повторим пройденное: Model-View-Controller - популярный шаблон программирования, используемый для разделения логики приложения на три различных компонента. Хотя шаблон MVC первоначально использовался в настольных приложениях, в конце 1990-х он стал популярным в разработке веб-приложений. Модель отвечает за логику данных, лежащую в основе приложения. Представление - это то, что пользователь видит в приложении и взаимодействует с ним. Контроллер действует как мозг приложения и взаимодействует с моделью и представлением. Веб-инфраструктуры, использующие шаблон MVC - это Ruby on Rails, ASP.NET MVC, Laravel и Angular.
img
232 или 4 294 967 296 IPv4 адресов это много? Кажется, что да. Однако с распространением персональных вычислений, мобильных устройств и быстрым ростом интернета вскоре стало очевидно, что 4,3 миллиарда адресов IPv4 будет недостаточно. Долгосрочным решением было IPv6, но требовались более быстрое решение для устранения нехватки адресов. И этим решением стал NAT (Network Address Translation). Что такое NAT Сети обычно проектируются с использованием частных IP адресов. Это адреса 10.0.0.0/8, 172.16.0.0/12 и 192.168.0.0/16. Эти частные адреса используются внутри организации или площадки, чтобы позволить устройствам общаться локально, и они не маршрутизируются в интернете. Чтобы позволить устройству с приватным IPv4-адресом обращаться к устройствам и ресурсам за пределами локальной сети, приватный адрес сначала должен быть переведен на общедоступный публичный адрес. И вот как раз NAT переводит приватные адреса, в общедоступные. Это позволяет устройству с частным адресом IPv4 обращаться к ресурсам за пределами его частной сети. NAT в сочетании с частными адресами IPv4 оказался полезным методом сохранения общедоступных IPv4-адресов. Один общедоступный IPv4-адрес может быть использован сотнями, даже тысячами устройств, каждый из которых имеет частный IPv4-адрес. NAT имеет дополнительное преимущество, заключающееся в добавлении степени конфиденциальности и безопасности в сеть, поскольку он скрывает внутренние IPv4-адреса из внешних сетей. Маршрутизаторы с поддержкой NAT могут быть настроены с одним или несколькими действительными общедоступными IPv4-адресами. Эти общедоступные адреса называются пулом NAT. Когда устройство из внутренней сети отправляет трафик из сети наружу, то маршрутизатор с поддержкой NAT переводит внутренний IPv4-адрес устройства на общедоступный адрес из пула NAT. Для внешних устройств весь трафик, входящий и выходящий из сети, выглядит имеющим общедоступный IPv4 адрес. Маршрутизатор NAT обычно работает на границе Stub-сети. Stub-сеть – это тупиковая сеть, которая имеет одно соединение с соседней сетью, один вход и выход из сети. Когда устройство внутри Stub-сети хочет связываться с устройством за пределами своей сети, пакет пересылается пограничному маршрутизатору, и он выполняет NAT-процесс, переводя внутренний частный адрес устройства на публичный, внешний, маршрутизируемый адрес. Терминология NAT В терминологии NAT внутренняя сеть представляет собой набор сетей, подлежащих переводу. Внешняя сеть относится ко всем другим сетям. При использовании NAT, адреса IPv4 имеют разные обозначения, основанные на том, находятся ли они в частной сети или в общедоступной сети (в интернете), и является ли трафик входящим или исходящим. NAT включает в себя четыре типа адресов: Внутренний локальный адрес (Inside local address); Внутренний глобальный адрес (Inside global address); Внешний местный адрес (Outside local address); Внешний глобальный адрес (Outside global address); При определении того, какой тип адреса используется, важно помнить, что терминология NAT всегда применяется с точки зрения устройства с транслированным адресом: Внутренний адрес (Inside address) - адрес устройства, которое транслируется NAT; Внешний адрес (Outside address) - адрес устройства назначения; Локальный адрес (Local address) - это любой адрес, который отображается во внутренней части сети; Глобальный адрес (Global address) - это любой адрес, который отображается во внешней части сети; Рассмотрим это на примере схемы. На рисунке ПК имеет внутренний локальный (Inside local) адрес 192.168.1.5 и с его точки зрения веб-сервер имеет внешний (outside) адрес 208.141.17.4. Когда с ПК отправляются пакеты на глобальный адрес веб-сервера, внутренний локальный (Inside local) адрес ПК транслируется в 208.141.16.5 (inside global). Адрес внешнего устройства обычно не переводится, поскольку он является общедоступным адресом IPv4. Стоит заметить, что ПК имеет разные локальные и глобальные адреса, тогда как веб-сервер имеет одинаковый публичный IP адрес. С его точки зрения трафик, исходящий из ПК поступает с внутреннего глобального адреса 208.141.16.5. Маршрутизатор с NAT является точкой демаркации между внутренней и внешней сетями и между локальными и глобальными адресами. Термины, inside и outside, объединены с терминами local и global, чтобы ссылаться на конкретные адреса. На рисунке маршрутизатор настроен на предоставление NAT и имеет пул общедоступных адресов для назначения внутренним хостам. На рисунке показано как трафик отправляется с внутреннего ПК на внешний веб-сервер, через маршрутизатор с поддержкой NAT, и высылается и переводится в обратную сторону. Внутренний локальный адрес (Inside local address) - адрес источника, видимый из внутренней сети. На рисунке адрес 192.168.1.5 присвоен ПК – это и есть его внутренний локальный адрес. Внутренний глобальный адрес (Inside global address) - адрес источника, видимый из внешней сети. На рисунке, когда трафик с ПК отправляется на веб-сервер по адресу 208.141.17.4, маршрутизатор переводит внутренний локальный адрес (Inside local address) на внутренний глобальный адрес (Inside global address). В этом случае роутер изменяет адрес источника IPv4 с 192.168.1.5 на 208.141.16.5. Внешний глобальный адрес (Outside global address) - адрес адресата, видимый из внешней сети. Это глобально маршрутизируемый IPv4-адрес, назначенный хосту в Интернете. На схеме веб-сервер доступен по адресу 208.141.17.4. Чаще всего внешние локальные и внешние глобальные адреса одинаковы. Внешний локальный адрес (Outside local address) - адрес получателя, видимый из внутренней сети. В этом примере ПК отправляет трафик на веб-сервер по адресу 208.141.17.4 Рассмотрим весь путь прохождения пакета. ПК с адресом 192.168.1.5 пытается установить связь с веб-сервером 208.141.17.4. Когда пакет прибывает в маршрутизатор с поддержкой NAT, он считывает IPv4 адрес назначения пакета, чтобы определить, соответствует ли пакет критериям, указанным для перевода. В этом пример исходный адрес соответствует критериям и переводится с 192.168.1.5 (Inside local address) на 208.141.16.5. (Inside global address). Роутер добавляет это сопоставление локального в глобальный адрес в таблицу NAT и отправляет пакет с переведенным адресом источника в пункт назначения. Веб-сервер отвечает пакетом, адресованным внутреннему глобальному адресу ПК (208.141.16.5). Роутер получает пакет с адресом назначения 208.141.16.5 и проверяет таблицу NAT, в которой находит запись для этого сопоставления. Он использует эту информацию и переводит обратно внутренний глобальный адрес (208.141.16.5) на внутренний локальный адрес (192.168.1.5), и пакет перенаправляется в сторону ПК. Типы NAT Существует три типа трансляции NAT: Статическая адресная трансляция (Static NAT) - сопоставление адресов один к одному между локальными и глобальными адресами; Динамическая адресная трансляция (Dynamic NAT) - сопоставление адресов “многие ко многим” между локальными и глобальными адресами; Port Address Translation (PAT) - многоадресное сопоставление адресов между локальными и глобальными адресами c использованием портов. Также этот метод известен как NAT Overload; Static NAT Статический NAT использует сопоставление локальных и глобальных адресов один к одному. Эти сопоставления настраиваются администратором сети и остаются постоянными. Когда устройства отправляют трафик в Интернет, их внутренние локальные адреса переводятся в настроенные внутренние глобальные адреса. Для внешних сетей эти устройства имеют общедоступные IPv4-адреса. Статический NAT особенно полезен для веб-серверов или устройств, которые должны иметь согласованный адрес, доступный из Интернета, как например веб-сервер компании. Статический NAT требует наличия достаточного количества общедоступных адресов для удовлетворения общего количества одновременных сеансов пользователя. Статическая NAT таблица выглядит так: Dynamic NAT Динамический NAT использует пул публичных адресов и назначает их по принципу «первым пришел, первым обслужен». Когда внутреннее устройство запрашивает доступ к внешней сети, динамический NAT назначает доступный общедоступный IPv4-адрес из пула. Подобно статическому NAT, динамический NAT требует наличия достаточного количества общедоступных адресов для удовлетворения общего количества одновременных сеансов пользователя. Динамическая NAT таблица выглядит так: Port Address Translation (PAT) PAT транслирует несколько частных адресов на один или несколько общедоступных адресов. Это то, что делают большинство домашних маршрутизаторов. Интернет-провайдер назначает один адрес маршрутизатору, но несколько членов семьи могут одновременно получать доступ к Интернету. Это наиболее распространенная форма NAT. С помощью PAT несколько адресов могут быть сопоставлены с одним или несколькими адресами, поскольку каждый частный адрес также отслеживается номером порта. Когда устройство инициирует сеанс TCP/IP, оно генерирует значение порта источника TCP или UDP для уникальной идентификации сеанса. Когда NAT-маршрутизатор получает пакет от клиента, он использует номер своего исходного порта, чтобы однозначно идентифицировать конкретный перевод NAT. PAT гарантирует, что устройства используют разный номер порта TCP для каждого сеанса. Когда ответ возвращается с сервера, номер порта источника, который становится номером порта назначения в обратном пути, определяет, какое устройство маршрутизатор перенаправляет пакеты. Картинка иллюстрирует процесс PAT. PAT добавляет уникальные номера портов источника во внутренний глобальный адрес, чтобы различать переводы. Поскольку маршрутизатор обрабатывает каждый пакет, он использует номер порта (1331 и 1555, в этом примере), чтобы идентифицировать устройство, с которого выслан пакет. Адрес источника (Source Address) - это внутренний локальный адрес с добавленным номером порта, назначенным TCP/IP. Адрес назначения (Destination Address) - это внешний локальный адрес с добавленным номером служебного порта. В этом примере порт службы 80: HTTP. Для исходного адреса маршрутизатор переводит внутренний локальный адрес во внутренний глобальный адрес с добавленным номером порта. Адрес назначения не изменяется, но теперь он называется внешним глобальным IP-адресом. Когда веб-сервер отвечает, путь обратный. В этом примере номера портов клиента 1331 и 1555 не изменялись на маршрутизаторе с NAT. Это не очень вероятный сценарий, потому что есть хорошая вероятность того, что эти номера портов уже были прикреплены к другим активным сеансам. PAT пытается сохранить исходный порт источника. Однако, если исходный порт источника уже используется, PAT назначает первый доступный номер порта, начиная с начала соответствующей группы портов 0-511, 512-1023 или 1024-65535. Когда портов больше нет, и в пуле адресов имеется более одного внешнего адреса, PAT переходит на следующий адрес, чтобы попытаться выделить исходный порт источника. Этот процесс продолжается до тех пор, пока не будет доступных портов или внешних IP-адресов. То есть если другой хост может выбрать тот же номер порта 1444. Это приемлемо для внутреннего адреса, потому что хосты имеют уникальные частные IP-адреса. Однако на маршрутизаторе NAT номера портов должны быть изменены - в противном случае пакеты из двух разных хостов выйдут из него с тем же адресом источника. Поэтому PAT назначает следующий доступный порт (1445) на второй адрес хоста. Подведем итоги в сравнении NAT и PAT. Как видно из таблиц, NAT переводит IPv4-адреса на основе 1:1 между частными адресами IPv4 и общедоступными IPv4-адресами. Однако PAT изменяет как сам адрес, так и номер порта. NAT перенаправляет входящие пакеты на их внутренний адрес, ориентируясь на входящий IP адрес источника, заданный хостом в общедоступной сети, а с PAT обычно имеется только один или очень мало публично открытых IPv4-адресов, и входящие пакеты перенаправляются, ориентируясь на NAT таблицу маршрутизатора. А что относительно пакетов IPv4, содержащих данные, отличные от TCP или UDP? Эти пакеты не содержат номер порта уровня 4. PAT переводит наиболее распространенные протоколы, переносимые IPv4, которые не используют TCP или UDP в качестве протокола транспортного уровня. Наиболее распространенными из них являются ICMPv4. Каждый из этих типов протоколов по-разному обрабатывается PAT. Например, сообщения запроса ICMPv4, эхо-запросы и ответы включают идентификатор запроса Query ID. ICMPv4 использует Query ID. для идентификации эхо-запроса с соответствующим ответом. Идентификатор запроса увеличивается с каждым отправленным эхо-запросом. PAT использует идентификатор запроса вместо номера порта уровня 4. Преимущества и недостатки NAT NAT предоставляет множество преимуществ, в том числе: NAT сохраняет зарегистрированную схему адресации, разрешая приватизацию интрасетей. При PAT внутренние хосты могут совместно использовать один общедоступный IPv4-адрес для всех внешних коммуникаций. В этом типе конфигурации требуется очень мало внешних адресов для поддержки многих внутренних хостов; NAT повышает гибкость соединений с общедоступной сетью. Многочисленные пулы, пулы резервного копирования и пулы балансировки нагрузки могут быть реализованы для обеспечения надежных общедоступных сетевых подключений; NAT обеспечивает согласованность для внутренних схем адресации сети. В сети, не использующей частные IPv4-адреса и NAT, изменение общей схемы адресов IPv4 требует переадресации всех хостов в существующей сети. Стоимость переадресации хостов может быть значительной. NAT позволяет существующей частной адресной схеме IPv4 оставаться, позволяя легко изменять новую схему общедоступной адресации. Это означает, что организация может менять провайдеров и не нужно менять ни одного из своих внутренних клиентов; NAT обеспечивает сетевую безопасность. Поскольку частные сети не рекламируют свои адреса или внутреннюю топологию, они остаются достаточно надежными при использовании в сочетании с NAT для получения контролируемого внешнего доступа. Однако нужно понимать, что NAT не заменяет фаерволы; Но у NAT есть некоторые недостатки. Тот факт, что хосты в Интернете, по-видимому, напрямую взаимодействуют с устройством с поддержкой NAT, а не с фактическим хостом внутри частной сети, создает ряд проблем: Один из недостатков использования NAT связан с производительностью сети, особенно для протоколов реального времени, таких как VoIP. NAT увеличивает задержки переключения, потому что перевод каждого адреса IPv4 в заголовках пакетов требует времени; Другим недостатком использования NAT является то, что сквозная адресация теряется. Многие интернет-протоколы и приложения зависят от сквозной адресации от источника до места назначения. Некоторые приложения не работают с NAT. Приложения, которые используют физические адреса, а не квалифицированное доменное имя, не доходят до адресатов, которые транслируются через NAT-маршрутизатор. Иногда эту проблему можно избежать, реализуя статические сопоставления NAT; Также теряется сквозная трассировка IPv4. Сложнее трассировать пакеты, которые подвергаются многочисленным изменениям адресов пакетов в течение нескольких NAT-переходов, что затрудняет поиск и устранение неполадок; Использование NAT также затрудняет протоколы туннелирования, такие как IPsec, поскольку NAT изменяет значения в заголовках, которые мешают проверкам целостности, выполняемым IPsec и другими протоколами туннелирования; Службы, требующие инициирования TCP-соединений из внешней сети, или stateless протоколы, например, использующие UDP, могут быть нарушены. Если маршрутизатор NAT не настроен для поддержки таких протоколов, входящие пакеты не могут достичь своего адресата; Мы разобрали основные принципы работы NAT. Хотите больше? Прочитайте нашу статью по настройке NAT на оборудовании Cisco.
img
NFV - виртуализация сетевых функций, это замена привычного оборудования (маршрутизаторов, коммутаторов и пр.) виртуальными аналогами, что даёт следующие возможности: Более эффективное использование ресурсов; Возможность использовать обычные высокопроизводительные сервера для любой задачи; Гибкое перераспределение ресурсов. Network Functions Virtualization Сети операторов связи состоят из большого многообразия различного физического оборудования. Для запуска новой службы или услуги часто необходима установка нового оборудования, что влечет за собой необходимость поиска свободного места в стойке, отдельного источника питания, специалиста обладающего необходимыми компетенциями и т.д. Более того, любое физическое оборудование в конце концов выходит из строя и перестает поддерживаться производителем, что провоцирует новый цикл интеграции оборудования на замену. Однако, в настоящее время темпы развития технологий крайне высоки и жизненный цикл оборудования еще более сокращается. Виртуализация сетевых функций нацелена на трансформацию принципа построения сетей за счет эволюции стандартов в технологиях виртуализации. Это поможет консолидировать сетевое оборудование в виде виртуальных машин на высокопроизводительных серверах, открытых коммутаторах и системах хранения, которые будут находиться в ЦОДах. Как было упомянуто, наибольшего прироста можно достичь с помощью одновременного использования SDN и NFV. На рисунке показано отношение между NFV, SDN и открытыми разработками в виде пересекающихся множеств. Виртуализации сетевых функций NFV Как видно из рисунка, виртуализация сетевых функций имеет общие черты с SDN технологией, однако не зависит от SDN, и наоборот. То есть NFV можно использовать без SDN, однако, при использовании сразу двух технологий можно, в перспективе, достичь хороших результатов. Кроме того, концепция SDN так же подразумевает использование мощных стандартизированных серверов и коммутаторов. Примеры использования виртуализации сетевых функций в корпоративных сетях и сетях операторов связи: Маршрутизаторы, шлюзы; HLR/HSS, SGN, SGSN, RNC, Node B, eNode B; Криптошлюзы; Офисные АТС; Сетевые экраны и системы предотвращения нежелательного доступа; DPI и анализаторы QoS; Мониторинговые и биллинговые службы; Сервера IMS - платформы; Сервера авторизации, балансировщики нагрузки. Преимущества виртуализации сетевых функций Как было упомянуто, использование данной концепции предоставляет много преимуществ, таких как: Уменьшенные капитальные расходы и токопотребление, увеличенные коэффициенты использования серверов; Уменьшение цикла инноваций и более быстрая разработка и предоставление инноваций; Возможность проводить тестирование, отладку на том же оборудовании, на котором запущены основные системы, что позволит сократить операционные расходы; При наличии распределенных ЦОДов возможность быстрой ре-локации виртуального оборудования без перерыва в работе для уменьшения задержки; Использование открытых разработок, большое количество документации, независимость от производителей оборудования; Оптимизация сетевой конфигурации иили топологии в зависимости от нагрузки в реальном времени; Возможность использования оркестраторов для полной автоматизации и независимости от человеческого фактора; Отказ от дорогого закрытого оборудования; Возможность временной реконфигурации в случае возникновения аварии, таким образом можно отказаться от операторов, следящих за состоянием сети и ЦОДа 24 часа в сутки; Возможность обновления без перерывов в работе, с легким возвратом версии в случае возникновении неполадок, возможность дупликации оборудования и синхронизации его состояния. Факторы, ускоряющие развитие виртуализации сетевых функций В первую очередь, таким фактором является быстрое развитие облачных технологий и появление большого количества ЦОДов. Виртуализация уже является ядром облачных технологий, и набирает ход использование таких открытых протоколов как OpenFlow - протокол для управления SDN - контроллером коммутаторами, OpenStack - оркестратор ЦОДа. Ранее, серьезным ограничителем являлось то, что серверные процессоры не были оптимизированы для обработки пакетов или потоков, но в настоящее время появились процессоры Intel Xeon, которые могут соперничать по производительности с граничными маршрутизаторами. Использование стандартизированных серверов на архитектуре x86 или x64, производство которых выросло за последние несколько лет позволит утилизировать преимущества NFV максимально. Факторы, сдерживающие развитие SDN и NFV Существует несколько известных проблем, сдерживающих быстрый рост ПКС и ВСФ: Проблема транспортировки виртуальных машин между ЦОДами, принадлежащих различных компаниям. Необходимо создание стандартизированного интерфейса, который позволил бы перемещать виртуальные машины с любого оборудования с использованием любого ПО для виртуализации. В настоящее время по причине большого количества вендоров ПО и оборудования — это практически невозможно; Проблема быстрого и однозначного выигрыша в производительности, так как необходимо использовать стандартные высокопроизводительные сервера, не получится использовать наработки различных вендоров, которые программно и аппаратно ускоряли обработку пакетов, потоков и т.д. Главный вопрос состоит в минимизации падения производительности по сравнению со старой схемой; Проблема миграции с физического оборудования на виртуализированное: для массового внедрения ВСФ необходимо проводить работы одновременно на всех крупных операторах связи для поддержания работоспособности и совместимости между оборудованием и системами управления сетью, OSS/BSS. Кроме того, необходимы инструменты для осуществления миграции с физического оборудования на виртуализированное; Стандартизация средств управления и автоматизации NFV. Использование и дальнейшее развитие ПКС позволит эффективно управлять виртуальными машинами и виртуализированным оборудованием с помощью контроллеров SDN; Вопрос масштабируемости будет закрыт только при условии полной автоматизации всех процессов виртуализации; Сетевая стабильность: необходима полная отказоустойчивость систем при управлении ЦОДом и автоматизации работы большого количества виртуальных машин от разных производителей оборудования. Особенно этот вопрос важен при обновлении и ре-локации систем. Вопрос безошибочного взаимодействия систем управления трафиком, балансировщиков нагрузки, контроллеров коллизий. Однако, данный вопрос до сих пор остается нерешенным в нынешних ЦОДах; Вопрос безопасности и отказоустойчивости: необходимо доказать, что использование SDN и NFV не ухудшит состояние систем информационной безопасности. Необходимо создание сертифицированных с точки зрения безопасности гипервизоров и виртуальных машин; Сложность управления: необходимо добиться серьезного уменьшения затрат на обслуживание и управление системами и избежать смены одной системы, на управление которой тратятся значительные ресурсы на другую; Проблемы интеграции: необходима легкая интеграция различного виртуального оборудования с различным физическим оборудованием при присутствии на рынке предложений от большого количества производителей. Обязательна легкая интеграция новейших разработок и стороннего ПО в системы управления и взаимодействия.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59