По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В предыдущей статье мы рассмотрели развертывание сервера с помощью Terraform в Amazon облаке. Мы использовали для развертывания файл с кодом, где описали полностью наш сервер и добавили скрипт на скриптовом языке bash, чтобы создалась HTML страничка с IP адресом сервера. Сам скрипт: user_data = <<EOF #!/bin/bash apt -y update apt -y install apache2 myip=`curl http://169.254.169.254/latest/meta-data/local-ipv4` echo "<h2>WebServer with IP: $myip</h2><br> Build by Terraform!" > /var/www/html /index.html sudo service httpd start chkconfig httpd on EOF Помещение подобного скрипта в код для поднятия инстанса, не очень хорошая практика, обычно для этого используются внешние статические файлы. На это есть несколько причин, одна из них разделение ролей в команде, например. Один человек пишет Terraform код, а другой скрипты для серверов на bash если это Linux сервер или на PowerShell если сервер разворачивается под управлением операционной системой Windows. Еще одной причиной является информационная безопасность точки зрения, которой не корректно вставлять скрипт внутри терраформ кода. Для начала создадим новую директорию Lesson-3 с помощью команды mkdir Lesson-3. Теперь, создадим новый файл WebServer.tr, командой nano webserver.tr и вставим рабочий код: Далее мы можем вырезать те данные которые у нас пойдут в скрипт и сохраняем файл. Создадим еще один файл назовем его user_data.sh. Создается файл достаточно просто - nano user_data.sh. В данный файл мы вставляем вырезанный кусок скрипта. Очень важно, обратите внимание! Файл должен начинаться с #!/bin/bash данная строка указывает, что для исполнения данного файла должен использоваться скриптовый язык bash. Сохраняем. На самом деле расширение файла, создаваемого не важно, т.к мы будем использовать функцию в Terraform которая берет контент из файла и делает вставку в код, автоматически подхватывая скрипт. Далее переходим к редактированию основного файла из которого мы вырезали скрипт. Открываем его любым текстовым редактором опять - nano webserver.tr. И нам теперь необходимо вставить функцию, которая возьмет данные из файла. В общем виде данная функция будет выглядеть следующим образом: user_data = file(“./dir/myfile.txt”) В нашем случае строчка модифицируется, т.к файл лежит в той же директории, что и Terraform файл user_data = file(“user_data.sh”). Теперь, чтобы проверить, как это работает мы должны сделать первоначальную инициацию Terraform, командой terraform init. Terraform, как обычно скачает все, что ему необходимо для работы. Далее проверяем, что у нас получилось и посмотрим, какие изменения Terraform произведет. В результате мы можем видеть, что, как и в прошлый раз будет создано 2 элемента. Сервер и Группа безопасности. Далее для запуска сервера мы можем использовать стандартную команду terraform apply и на вопрос системы отвечаем утвердительно. Можно сразу увидеть, что процесс создания сервера и группы безопасности начался. Как видите процесс занял совсем небольшое время. В данном случае не более одной минуты. Если мы зайдем в консоль мы можем убедится, что инстанс поднялся. Находим присвоенный амазоном белый ip адрес, который нам позволит из интернета проверить работоспособность нашего сервера и использование статического файла в качестве нашего скрипта, т.е убедится, что у нас все заработало. И последний шаг, проверяем что наш веб сервер доступен из глобальной сети. Обращаемся к нему, через браузер по протоколу http. В данном случае - http://18.157.187.102/. Вот мы можем увидеть вот такую картину. Не забудьте выключить и удалить все не нужные вам ресурсы в Амазон, во избежание лишних затрат. Статические внешние файлы играют большую роль в написание Terraform кода, потому что они используется практически во всех проектах и постоянно нужна в работе.
img
В этой заключительной статье о перераспределении маршрутов мы проверим работу Route redistribution с помощью IPv6 и увидим небольшое отличие в настройке routes redistributed IPv6 от routes redistributed IPv4. Предыдущие статьи из цикла: Часть 1. Перераспределение маршрутов (Route redistribution) Часть 2. Фильтрация маршрутов с помощью карт маршрутов Часть 3. Перераспределение маршрутов между автономными системами (AS) Перераспределение подключенных сетей Во-первых, рассмотрим маршрутизатор, выполняющий маршрутизацию, предположим, что используется протокол OSPF. Кроме того, предположим, что маршрутизатор имеет несколько интерфейсов, которые участвуют в маршрутизации OSPF. Представьте, что на этом же маршрутизаторе мы запускаем другой протокол маршрутизации (скажем, EIGRP), и мы делаем взаимное перераспределение маршрутов. Вот что удивительно. Если мы делаем перераспределение маршрута на этом маршрутизаторе, сети IPv4, связанные с интерфейсами этого маршрутизатора, участвующими в OSPF в нашем примере, будут перераспределены в EIGRP. Однако сети IPv6, будут вести себя по-другому. В частности, в сетях IPv6 мы должны ввести дополнительный параметр в нашу конфигурацию перераспределения маршрутов, явно указывая, что мы хотим перераспределить подключенные сети. В противном случае эти маршруты IPv6, связанные с непосредственно с подключенными интерфейсами, не перераспределяются. Логика такого поведения вытекает из понимания того, что для перераспределения маршрута данный маршрут должен появиться в таблице IP-маршрутизации маршрутизатора. Конечно, когда посмотрим таблицу IP-маршрутизации маршрутизатора и увидим непосредственно подключенные сети, эти сети отображаются как подключенные сети, а не сети, которые были изучены с помощью определенного протокола маршрутизации. В то время как route redistribution для IPv4 понимает, что сеть напрямую подключена, но участвует в процессе маршрутизации и поэтому будет перераспределена, route redistribution для IPv6 не делает такого предположения. В частности, если мы перераспределяем сети IPv6 из одного протокола маршрутизации в другой, эти сети должны отображаться в таблице маршрутизации IPv6 маршрутизатора вместе с указанием, что они были изучены с помощью перераспределяемого протокола маршрутизации. Конечно, мы можем добавить дополнительный параметр к нашей команде redistribute, чтобы заставить эти непосредственно подключенные сети IPv6 (участвующие в распространяемом протоколе) также быть перераспределенными. Эта настройка будет продемонстрирована немного позже. Перераспределение в OSPF В прошлой статье мы обсуждали потенциальную проблему, с которой вы можете столкнуться при распространении в OSPF (в зависимости от вашей версии Cisco IOS). Проблема была связана с подсетями. В частности, по умолчанию в более старых версиях Cisco IOS OSPF только перераспределяет классовые сети в OSPF, если мы не добавим параметр subnets к команде redistribute. Добавление этого параметра позволило перераспределить сети в OSPF, даже если у них не было классовой маски. Пожалуйста, имейте в виду, что последние версии Cisco IOS автоматически добавляют параметр подсети, не требуя от вас ручного ввода. Однако параметр подсети в IPv6 route redistribution отсутствует. Причина в том, что IPv6 не имеет понятия о подсетях. Пример route redistribution IPv6 Чтобы продемонстрировать перераспределение маршрутов IPv6, рассмотрим следующую топологию: Протоколы маршрутизации OSPFv3 и EIGRP для IPv6 уже были настроены на всех маршрутизаторах. Теперь давайте перейдем к маршрутизатору CENTR и настроим взаимное route redistribution между этими двумя автономными системами. Убедимся в этом, проверив таблицу маршрутизации IPv6 маршрутизатора CENTR. Приведенные выше выходные данные показывают, что мы изучили две сети IPv6 через OSPF, две сети IPv6 через EIGRP, а CENTR напрямую подключен к двум сетям IPv6. Далее, давайте настроим взаимное перераспределение маршрутов между OSPFv3 и EIGRP для IPv6. CENTR # conf term Enter configuration commands, one per line. End with CNTL/Z. CENTR (config)# ipv6 router eigrp 1 CENTR (config-rtr) # redistribute ospf 1 metric 1000000 2 255 1 1500? include-connected Include connected match Redistribution of OSPF routes route-map Route map reference cr CENTR (config-rtr) #redistribute ospf 1 metric 1000000 2 255 1 1500 include-connected CENTR (config-rtr) #exit CENTR (config) # ipv6 router ospf 1 CENTR (config-rtr) #redistribute eigrp 1? include-connected Include connected metric Metric f or redistributed routes metric-type OSPF/IS-IS exterior metric type for redistributed routes nssa-only Limit redistributed routes to NSSA areas route-map Route map reference tag Set tag for routes redistributed into OSPF cr CENTR (config-rtr) #redistribute eigrp 1 include-connected CENTR (config-rtr) #end CENTR# Обратите внимание, что конфигурация взаимного перераспределения маршрутов, используемая для маршрутов IPv6, почти идентична нашей предыдущей конфигурации для перераспределения маршрутов IPv4. Однако для обеих команд перераспределения был указан параметр include-connected. Это позволило маршрутизатору CENTR перераспределить сеть 2003::/64 (непосредственно подключенную к интерфейсу Gig0/1 маршрутизатора CENTR и участвующую в OSPF) в EIGRP. Это также позволило маршрутизатору CENTR перераспределить сеть 2004::/64 (непосредственно подключенную к интерфейсу Gig0/2 маршрутизатора CENTR и участвующую в EIGRP) в OSPF. Чтобы убедиться, что наша конфигурация рабочая, давайте перейдем на оба маршрутизатора OFF1 и OFF2, убедившись, что каждый из них знает, как достичь всех шести сетей IPv6 в нашей топологии. Вышеприведенные выходные данные подтверждают, что маршрутизаторы OFF1 и OFF2 знают о своих трех непосредственно связанных маршрутах и трех маршрутах, перераспределенных в процессе маршрутизации. Итак, как мы видим, что когда речь заходит о routes redistributed IPv6, то не так уж много нового нужно узнать по сравнению с routes redistributed IPv4.
img
По умолчанию, в Windows Server 2019 брандмауэр настроен на блокировку входящего трафика ICMP. Сюда входят эхо-запросы, которые используются командой ping, и это может затруднить устранение неполадок в сети. Некоторые системы мониторинга используют команду ping для отслеживания доступности серверов. В этом руководстве рассмотрим, как включить правило, чтобы сервер стал отвечать на ping используя графический интерфейс Windows Server 2019, а также включим разрешающее правило через PowerShell и netsh. Обычно просто отключают Windows Firewall полностью, однако это не рекомендуется делать в производственной среде, так как брандмауэр Windows хорошо справляется с обеспечением базового уровня защиты системы. Разрешим только конкретное правило, необходимое для успешного выполнения команды ping. Разрешить проверку связи через брандмауэр Windows Сначала нам нужно открыть брандмауэр Windows, это можно сделать несколькими способами. Один из методов - просто нажать клавишу Windows, чтобы открыть меню "Start", а затем начать вводить слово Firewall. Как показано ниже, брандмауэр Windows с расширенной безопасностью должен отображаться, выберите этот пункт. Еще один быстрый способ: в PowerShell можно просто ввести "firewall" и нажать Enter. Откроется базовый интерфейс брандмауэра, а затем нажать кнопку "Advanced settings" в левой части. Откроется тот же интерфейс, что и через меню "Start". Следующий способ открыть Firewall - ввести в CMD такой текст: "firewall.cpl" В Брандмауэре в расширенном режиме перейдите в Inboud Rules (Правила для входящих подключений). В перечне правил в Inboud Rules, найдите "File and Printer Sharing (Echo Request - ICMPv4-In)" и активируйте его. Еще один вариант. Активируем разрешающее правило командлетом Powershell Set-NetFirewallRule -DisplayName "File and Printer Sharing (Echo Request - ICMPv4-In)" -enabled True Полную справку со всеми параметрами можно получить, набрав команду в PowerShell help New-NetFirewallRule Вариант создания правила через netsh netsh advfirewall firewall add rule name="ICMP Allow incoming V4 echo request" protocol=icmpv4:8,any dir=in action=allow Примечание: Включение правила позволит получать ответы только на IPv4 запросы, если нужно получать ответы по IPv6, нужно разблокировать правило такое же правило, только с Echo Request - ICMPv6-In, перечисленное ниже. К тому же имеется несколько профилей: доменный, публичный, частный. Ненужные профили можно отключить в правиле, во вкладке Advanced. После разблокировки правила сервер должен начать отвечать на запросы ping. С хоста виртуализации или другого пк в локальной сети протестируем ping'ом Windows Server 2019 по адресу 192.168.1.11 перед включением правила, а затем снова после его включения. Ниже видно, что время ожидания первых запросов истекло, так как входящие запросы ICMP были отключены по умолчанию в Windows Server 2019. После включения правила ICMP запросы ping успешно выполняются, что подтверждает ожидаемую работу. Пример проверки связи: Скачать видео. Резюме Стандартное правило брандмауэра - блокировать ICMP запросы, в итоге сервер не отвечает на ping. Включив это правило брандмауэра, мы включили команду ping в Windows Server 2019, которая поможет нам устранить неполадки в сети.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59