По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Сегментная маршрутизация (Segment Routing, SR) может или не может считаться туннельным решением, в зависимости от конкретной реализации и того, насколько строго вы хотите придерживаться определения туннелей, представленного ранее в статье "Виртуализация сетей". В этой статье будет рассмотрена основная концепция сегментной маршрутизации и две возможные схемы реализации: одна с использованием меток потока IPv6, а другая с использованием меток многопротокольной коммутации по меткам (Multiprotocol Label Switching -MPLS). Каждому устройству в сети с поддержкой SR присваивается уникальная метка. Стек меток, описывающий путь в терминах этих уникальных меток, может быть присоединен к любому пакету, заставляя его принимать определенный указанный путь. Рисунок 5 демонстрирует это. Каждый маршрутизатор на рисунке 5 объявляет IP-адрес в качестве идентификатора вместе с меткой, прикрепленной к этому IP-адресу. В SR метка, прикрепленная к идентификатору маршрутизатора, называется идентификатором сегмента узла (SID узла). Поскольку каждому маршрутизатору в сети присваивается уникальная метка, путь через сеть может быть описан с использованием только этих меток. Например: Если вы хотите перенаправить трафик от A к K по пути [B, E, F, H], вы можете описать этот путь с помощью меток [101,104,105,107]. Если вы хотите перенаправить трафик от A к K по пути [B, D, G, H], вы можете описать этот путь с помощью меток [101,103,106,107]. Набор меток, используемых для описания пути, называется стеком меток. Между D и H есть две связи; как это можно описать? В SR доступно несколько опций, в том числе: Стек меток может включать в себя только идентификаторы SID узла, описывающие путь через сеть в терминах маршрутизаторов, как показано ранее. В этом случае, если бы стек меток включал пару [103,107], D просто перенаправлял бы H в обычном режиме на основе информации локальной маршрутизации, поэтому он будет использовать любой локальный процесс, который он будет использовать для пересылки любого другого пакета, например, распределение нагрузки между двумя каналами для пересылки трафика с меткой SR. Стек меток может включать явную метку для загрузки общего ресурса по любому доступному набору путей, доступных в этой точке сети. H может назначить метку для каждого входящего интерфейса, а также SID узла, привязанный к его локальному идентификатору маршрутизатора. Эти метки будут объявляться так же, как SID узла, но, поскольку они описывают смежность, они называются SID смежности (adjacency). SID смежности уникален локально; он уникален для маршрутизатора, объявляющего сам SID смежности. Третий вид SID, префиксный SID, описывает конкретный достижимый пункт назначения (префикс) в сети. SID узла может быть реализован как SID префикса, привязанный к loopback адресу на каждом маршрутизаторе в сети. Не обязательно, чтобы весь путь описывался стеком меток. Например, стек меток [101,103] будет направлять трафик в B, затем в D, но затем позволит D использовать любой доступный путь для достижения IP-адреса назначения в K. Стек меток [105] обеспечит прохождение трафика через сеть к K будет проходить через F. Не имеет значения, как трафик достиг этой точки в сети и как он был перенаправлен после того, как достигнет F, если он проходит через F, будучи направленным к K. Каждая метка в стеке представляет собой сегмент. Пакеты переносятся от метки к метке через каждый сегмент в сети, чтобы быть транспортированными от головной части пути к хвостовой части пути. Маршрутизация сегментов с многопротокольной коммутацией меток MPLS был изобретен как способ сочетать преимущества асинхронного режима передачи (ATM), который больше не используется широко, с IP-коммутацией. В первые дни сетевой инженерии наборы микросхем, используемые для коммутации пакетов, были более ограничены в своих возможностях, чем сейчас. Многие из используемых наборов микросхем были Field Programmable Gate Arrays (FPGA), а не Application-Specific Integrated Circuits (ASIC), поэтому длина поля, в котором коммутировался пакет, напрямую коррелировала со скоростью, с которой пакет мог коммутироваться. Часто было проще переработать пакет или обработать его дважды, чем включать в заголовок много сложной информации, чтобы пакет можно было обработать один раз. Примечание: повторное использование пакетов по-прежнему часто используется во многих наборах микросхем для поддержки внутренних и внешних заголовков или даже для обработки различных частей более длинного и сложного заголовка пакета. MPLS инкапсулирует исходный пакет в заголовок MPLS, который затем используется для коммутации пакета по сети. На рисунке 6 показан заголовок MPLS. Весь заголовок состоит из 32 бит, метка 20 бит. Устройство пересылки MPLS может выполнять три операции: Текущая метка в заголовке MPLS может быть заменена другой меткой (SWAP). В пакет можно вставить новую метку (PUSH). Текущая метка может быть очищена, а метка под текущей меткой обработана (POP). Операции PUSH и POP переносятся непосредственно в SR: операция SWAP реализована в SR как CONTINUE, что означает, что текущая метка заменяется той же меткой (т. е. заголовок с меткой 100 будет заменен меткой 100), и обработка этого текущего сегмента будет продолжена. Проще всего понять процесс обработки на примере. Рисунок 7 демонстрирует это. На рисунке 7 каждому маршрутизатору присвоена глобально уникальная метка из глобального блока сегментной маршрутизации (Segment Routing Global Block -SRGB). Они объявляются через протокол маршрутизации или другую плоскость управления. Когда A получает пакет, предназначенный для N, он выбирает путь через сеть, используя некоторый локальный механизм. В этот момент: Чтобы начать процесс, A выполнит PUSH серии заголовков MPLS на пакете, которые описывают путь через сеть, [101,103,104,202,105,106,109, 110]. Когда A коммутирует пакет в сторону B, он вставит первую метку в стек, так как нет необходимости отправлять свою собственную метку в заголовке. Стек меток на канале [A,B] будет равен [103,104,202,105,106,109,110]. Когда B получает пакет, он проверяет следующую метку в стеке. Обнаружив, что метка равна 103, он выполнит POP этой метки и перешлет пакет в D. В этом случае стек меток SR выбрал один из двух возможных путей с равной стоимостью через сеть, так что это пример выбора SR конкретного пути. Стек меток на канале [B, D] будет [104,202,105,106,109,110]. Когда D получает пакет, верхняя метка в стеке будет 104. D выполнит POP этой метки и отправит пакет в E. Стек меток на канале [D, E] будет [202,105,106,109,110]. Когда E получает этот пакет, верхняя метка в стеке - 202. Это селектор смежности, поэтому он выбирает конкретный интерфейс, а не конкретного соседа. E выберет правильный интерфейс, нижний из двух интерфейсов на рисунке, и POP этой метки. Верхняя метка теперь представляет собой SID узла для F, который можно удалить, поскольку пакет передается на F. E переработает пакет и также откроет эту POP. Стек меток на канале [E, F] будет [106,109,110]. Когда пакет достигает F, следующей меткой в стеке будет 106. Эта метка указывает, что пакет должен быть передан в G. F выполнит POP метки и передаст ее G. Стек меток на канале [F, G] будет [109,110]. Когда пакет достигает G, следующая метка в стеке - 109, что указывает на то, что пакет должен быть направлен к L. Поскольку G не соединен напрямую с L, он может использовать локальный, свободный от петель (обычно самый короткий) путь к L. В этом случае есть два пути с равной стоимостью к L, поэтому G выполнит POP метки 109 и переадресовывает по одному из этих двух путей к L. В сегменте [G, L] стек меток равен [110]. Предположим, что G решает отправить пакет через K. Когда K получает пакет, он будет иметь стек меток, содержащий [110], который не является ни локальной меткой, ни смежным узлом. В этом случае метка должна оставаться прежней, или сегмент должен иметь CONTINUE. Чтобы реализовать это, K поменяет текущую метку 110 на другую копию той же метки, так что K будет пересылать трафик с той же меткой. На канале [K,L] стек меток будет равен [110]. Когда L принимает пакет, единственной оставшейся меткой будет 110, что указывает на то, что пакет должен быть направлен в M. L будет выполнена POP метки 109, эффективно удалив всю инкапсуляцию MPLS, и перенаправит пакет в M. Когда M получает пакет, он пересылает его, используя обычный IP-адрес, в конечный пункт назначения - N. Концепция стека меток в MPLS реализована в виде серии заголовков MPLS, уложенных друг на друга. Pop метки означает удаление самой верхней метки, push метки означает добавление нового заголовка MPLS в пакет, а continue означает замену метки идентичной меткой. Когда вы работаете со стопкой меток, понятия внутреннего и внешнего часто сбивают с толку, особенно, поскольку многие люди используют идею метки и заголовка как взаимозаменяемые. Возможно, лучший способ уменьшить путаницу - использовать термин "заголовок" для обозначения всего стека меток и исходного заголовка, переносимого внутри MPLS, при этом обращаясь к меткам как к отдельным меткам в стеке. Тогда внутренний заголовок будет исходным заголовком пакета, а внешний заголовок будет стеком меток. Внутренняя метка будет следующей меткой в стеке в любой момент прохождения пакета по сети, а внешняя метка будет меткой, по которой пакет фактически переключается. Хотя в приведенном здесь примере используются IP-пакеты внутри MPLS, протокол MPLS предназначен для передачи практически любого протокола, включая Ethernet. Таким образом, SR MPLS не ограничивается использованием для передачи одного типа трафика, но может также использоваться для передачи кадров Ethernet по сети на основе IP / MPLS. Это означает, что SR можно использовать для поддержки первого варианта использования, обсуждаемого в этой статье, - предоставления услуг Ethernet по IP-сети. MPLS - это туннель? Много написанных и произнесенных слов были пролиты на вопрос о том, является ли MPLS протоколом туннелирования. Здесь туннелирование определяется как действие, а не протокол; это намеренная попытка отделить идею протокола туннелирования от концепции туннелирования как действия, предпринимаемого при передаче трафика через сеть. В случае MPLS это означает, что он может быть, а может и не быть протоколом туннелирования, в зависимости от того, как он используется - как и любой другой протокол. Например, если у вас есть стек меток, помещенных поверх пакета с IP-заголовком, внешняя метка, на которую коммутируется пакет, не является (технически) туннелем. Этот внешний заголовок в сети MPLS фактически является локальным для сегмента, поэтому он либо выталкивается, либо отправляется на каждом маршрутизаторе. Это аналогично заголовку Ethernet для каждого канала. Однако внутренний заголовок переносится в пакете MPLS и, следовательно, технически туннелируется. Внутренняя метка не используется на текущем устройстве для коммутации пакета; он просто переносится как часть пакета. Это определение не идеально. Например, в случае MPLS SWAP или SR CONTINUE, используется ли метка для коммутации пакета или нет? Кроме того, в отличие от заголовка Ethernet в пакете, заголовок MPLS фактически используется при принятии решения о пересылке. Заголовок Ethernet, напротив, просто используется для достижения следующего перехода, а затем отбрасывается. Возможно, более подходящим сравнением было бы следующее: Заголовок MPLS подобен заголовку Ethernet, который используется для достижения перехода за пределы устройства, на которое маршрутизатор в настоящее время передает. Независимо от этих ограничений, этого определения обычно достаточно, чтобы мысленно управлять различием между туннелированием и не туннелированием в MPLS, а также в большинстве других протоколов.
img
Ядро Linux - это фундамент, на котором работают все дистрибутивы Linux. Это программное обеспечение с открытым исходным кодом - любой может декомпилировать, изучить и изменить код. Обновленные версии ядра могут повысить безопасность, добавить функциональность и повысить скорость работы операционной системы. Это руководство расскажет вам, как обновить ядро Linux на CentOS 7. Шаги по обновлению версии ядра CentOS Менеджер пакетов yum позволяет обновлять ядро. Однако CentOS не предлагает последнюю версию ядра в официальном репозитории. Чтобы обновить ядро в CentOS, вам необходимо установить сторонний репозиторий под названием ElRepo. ElRepo предлагает последнюю версию ядра, доступную на kernel.org. Официальные выпуски тестируются, чтобы убедиться, что они работают правильно и не дестабилизируют работу приложений и функций ОС. Есть два типа версий ядра Linux: Стабильный выпуск ядра с долгосрочной поддержкой (Stable long-term supported kernel release) - обновляется реже, но поддерживается дольше. Основной выпуск ядра (Mainline kernel release) - более короткий срок поддержки, но более частые обновления. Шаг 1. Проверьте текущую версию ядра. Чтобы проверить текущую версию ядра в CentOS, откройте интерфейс командной строки и введите следующую команду: uname -msr Система должна вернуться с записью, которая выглядит следующим образом: Output Linux 3.10.0-862.el7.x86-64 x86-64 В выходных данных указывается, какая версия ядра используется в настоящее время и на какой архитектуре оно основано. Шаг 2. Обновите репозитории CentOS Перед обновлением ядра все пакеты должны быть обновлены до последней версии. Чтобы обновить репозитории программного обеспечения CentOS, используйте команду: sudo yum -y update Ваш репозиторий программного обеспечения обновлен. Это гарантирует, что у вас будет доступ к последней версии ядра. Примечание. Параметр -y указывает системе отвечать «да» на любые всплывающие подсказки. Шаг 3. Включите репозиторий ELRepo Чтобы установить новую версию ядра, необходимо включить новый репозиторий (репозиторий ELRepo). В окне терминала введите: sudo rpm --import https://www.elrepo.org/RPM-GPG-KEY-elrepo.org Предыдущая команда устанавливает ключ GPG для репозитория ELRepo. Это важно - CentOS не позволит установить неподписанный программный пакет. Ключ GPG обеспечивает цифровую подпись для проверки подлинности программного обеспечения. Затем установите репозиторий ELRepo, выполнив следующую команду: sudo rpm -Uvh https://www.elrepo.org/elrepo-release-7.0-3.el7.elrepo.noarch.rpm Подождите, пока система завершит выполнение операции. Шаг 4: Список доступных ядер Чтобы вывести список доступных ядер, введите: yum list available --disablerepo='*' --enablerepo=elrepo-kernel Система должна вернуть список доступных модулей. Обратите внимание на строку в списке, в которой написано kernel-lt, что означает стабильный выпуск с долгосрочной поддержкой, или kernel-ml, который указывает на основной выпуск с более коротким сроком поддержки, но с более частыми обновлениями. Затем посмотрите на правый столбец и обратите внимание на ряд букв и цифр (который выглядит примерно как «4.4.113-1.e17.elrepo»). Это версия ядра. Используйте эти две части информации, чтобы решить, какую версию ядра вы хотите установить. Как видите, ядро Linux 5 - это последний основной выпуск. Шаг 5: Установите новую версию ядра CentOS Чтобы установить последнее основное ядро: sudo yum --enablerepo=elrepo-kernel install kernel-ml Чтобы установить последнее ядро долгосрочной поддержки: sudo yum --enablerepo=elrepo-kernel install kernel-lt Система должна загрузить программное обеспечение, а затем предложить вам подтвердить, что установка подходит - введите y и нажмите Enter. Подождите, пока процесс завершится. Шаг 6: перезагрузите и выберите новое ядро Перезагрузите систему, выполнив команду: reboot Вам будет представлен GRUB или меню загрузки. С помощью клавиш со стрелками выберите только что установленное ядро ??Linux, затем нажмите Enter. Ваша операционная система должна нормально загрузиться. Шаг 7. Проверьте работоспособность Найдите минутку, чтобы проверить функциональность вашей системы CentOS. Все ли у вас программное обеспечение запускается правильно и без ошибок? Все ли ваши сетевые функции работают правильно? Протестируйте новое ядро ??так, чтобы все ошибки были вовремя обнаружены и исправлены. Или, если нет никаких исправлений, вы можете вернуться к старому ядру. Шаг 8: Установите версию ядра по умолчанию Убедившись, что новое ядро ??совместимо и работает правильно, вы захотите отредактировать загрузочную утилиту GRUB так, чтобы по умолчанию она загружала ваше новое ядро. Перейдите в /etc/default/ и откройте файл grub в текстовом редакторе. Или введите в терминал следующее: sudo vim /etc/default/grub После открытия файла найдите строку с надписью GRUB_DEFAULT=X и измените ее на GRUB_DEFAULT=0. Эта строка проинструктирует загрузчик по умолчанию использовать первое ядро ??в списке, которое является последним. Сохраните файл, а затем введите следующую команду в терминале, чтобы воссоздать конфигурацию ядра: sudo grub2-mkconfig -o /boot/grub2/grub.cfg Перезагрузитесь еще раз: reboot Убедитесь, что загрузчик настроен на загрузку последней версии ядра по умолчанию. Итог Готово! Мы обновили ядро CentOS до последней стабильной версии с помощью ELRepo.
img
С момента появления вычислительной техники и интернета компьютерная сеть играет жизненно важную роль для обмена ресурсами и информацией как внутри организации, так и на глобальном уровне. Люди, которым поручено контролировать эти сети, называются сетевыми инженерами или сетевыми администраторами. Сетевые инженеры и администраторы используют различные инструменты для проектирования, мониторинга или анализа компьютерных систем. Что бы не экспериментировать на реальных сетях (что чревато сбоем или выходом из строя сетевой инфраструктуры) системные администраторы для этого используют инструменты сетевого моделирования. Сегодня мы рассмотрим 5 лучших инструментов сетевого моделирования, которые могут помочь вам в проектировании и улучшении производительности системы. После изучения нашего списка инструментов сетевого моделирования, вы сможете выбрать себе наиболее оптимальное программное обеспечение для эмуляции сетей. Данное ПО позволит решить проблемы и провести тесты, которые невозможно применить на реально-существующих сетях из-за риска нарушить нормальное функционирование. GNS3 GNS3: это одна из самых популярных программ эмуляции сети, которая позволяет наблюдать взаимодействие сетевых устройств в различных топологиях сетей. Это программное обеспечение, которое является интегрированным сегментом в международной сети обучения сертификации. Одного такого факта достаточно, чтобы показать, насколько современным и всеобъемлющим является этот программный инструмент, когда речь заходит об успешном моделировании сети. Он прост в установке и реализации, что делает его популярным выбором как на любительском, так и на профессиональном уровне. Cisco Packet Tracer Cisco Packet Tracer: одна из основных причин, по которой этот инструмент моделирования сети, разработанный CISCO systems, занял второе место в ТОП-5, заключается в том, что он кросс-платформенный. Этот уникальный инструмент моделирования поможет вам не только построить топологию сети, но и воспроизвести ее в современных компьютерных сетях. Cisco PT позволяет имитировать соответствующую конфигурацию через CLI. А еще Packet Tracer отлично подходит для VoIP EVE-NG EVE-NG: Emulated Virtual Environment Next Generation or EVEN-NG- это единственный в своем роде многопользовательский сетевой симулятор, предназначенный для небольших предприятий и частных лиц. Реализация этого инструмента моделирования виртуальной сети является как платным, так и бесплатным. Бесплатная версия имеет ограничение в 63 узла на лабораторию. Для виртуализации, связывания и настройки сетевых устройств нет необходимости загружать и устанавливать дополнительное приложение помимо сервера. Все проектирование, подключение и управление сетевыми топологиями можно легко выполнить с помощью интегрированного HTML5- клиента. Важным фактором, который делает EVE-NG одним из лучших инструментов моделирования сети, является то, что приложение экономит время, позволяя вам вносить изменения в топологию сетей во время их одновременного запуска. Кроме того, она подходит как для Ethernet, так и для последовательных интерфейсов. Boson NetSim Boson NetSim: это приложение, имитирующее сетевые коммутаторы и маршрутизаторы Cisco. Одна из ключевых особенностей этого инструмента моделирования заключается в том, что он поставляется вместе со всеми лабораторными работами от Boson, и нет необходимости загружать отдельные файлы и импортировать их позже в NetSim. Весь процесс загрузки, отделки и сортировки лабораторных работ осуществляется в самом приложении. Построение и загрузка топологий сетей могут быть легко выполнены с помощью приложения. И наоборот, вы также можете просматривать топологии, загруженные другими участниками сообщества, и загружать их в приложение. Функции терминала чрезвычайно реалистичны. Также стоит отметить, что Boson NetSim заимствует интуитивно понятную систему настройки от GNS3. Дополнительные модули (называемые надстройками) могут быть включены для настройки сетевого устройства. Когда устройство подключено к топологии сети, программное обеспечение спрашивает, какие именно модули вы хотите добавить. VIRL VIRL: Virtual Internet Routing Lab или VIRL- это эмулятор виртуальной сети от Cisco, который был специально разработан для удовлетворения потребностей образовательных учреждений и частных лиц. Будучи одним из топ-5 инструментов моделирования сетей в 2020 году, он поставляется в высоко масштабируемых вариантах, специально разработанных для средних и крупных предприятий. VIRL, поддерживающий клиент-серверную модель и сервер, могут быть легко установлены на виртуальной машине под управлением ESXi от VMware или даже на "голом железе" сервера. Использование инструмента моделирования VIRL позволяет вам получить доступ к целому ряду лицензированных образов программного обеспечения Cisco, таких, как NX-Osv, IOS-Xrv, ASAv и IOSv (как второго уровня, так и третьего уровня). Хорошо то, что эти образы можно легко извлечь из сервера VIRL и установить поверх других эмуляторов, таких как EVE-NG и GNS3. Кроме того, VIRL ввела функцию, известную как AutoNetKit, которая облегчает базовые функции конфигурации на узлах для автоматического заполнения всей топологии сети. Эта функция очень эффективна в том случае, если вам необходимо быстро оценить модель поведения конкретной технологии или, практически воссоздать всю существующую сеть. Подведем итоги Приведенный выше список, безусловно, является кратким, но он определенно является всеобъемлющим для личных целей. Цель этого списка состоит не только в том, чтобы познакомить вас со списком инструментов моделирования сети входящих топ- 5, но и познакомить вас с возможностями специализированных функций этих инструментов.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59