По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Cisco Unity Connection (CUC) это решение, которое создано для обеспечения обмена голосовыми сообщениям в корпоративной сети и удовлетворения целого множества других бизнес – требований. Пользователи CUC могу прослушивать оставленные для них голосовые сообщения с помощью телефона, технологий по распознаванию речи и множества других клиентских приложений. Гибкий интерфейс администратора, позволяет легко настраивать приложения для конвертации текста в речь с целью удовлетворения бизнеса. CUC – масштабируется до 20 000 пользователей в рамках одного сервера. Если необходима поддержка большего количества пользователей, решение позволяет одновременно разворачивать до 10 серверов а так же поддерживает кластеризацию. Начиная с версии 8.5, поддерживается Unified Messaging, который обеспечивает синхронизацию голосовой почты с Exchange сервером. С версии 7.x, CUC поддерживает кластерные пары модели «active-active», в рамках которой обеспечивается высокий показатель отказоустойчивости и масштабируемости по сравнению с единичным сервером. Важно отметить, что Cisco Unity поддерживает протокол VPIM (Voice Profile for Internet Mail), который описан в RFC 2423 и RFC 3801 и обеспечивает использование различных платформ для голосовой почты таких производителей как Cisco, Nortel или Avaya, в рамках одной сети. Для организаций, которым не нужна крупная и сильно производительная система, существует возможность инсталляции CUC как части Cisco Unified Communications Manager Business Edition, который совмещает в себе функционал CUCM и CUC в рамках единого сервера, с возможностью поддержки до 500 телефонных аппаратов и пользователей голосовой почты и 24 порта Unity Connection. Разработанный специально для среднего бизнеса, Business Edition не обладает такими высокими показателями масштабируемости и отказоустойчивости, однако является привлекательным решением с точки зрения цены и удобства администрирования. Администраторы, которые поработил с интерфейсом Cisco Unified Communications Manager смогут оценить достоинства интерфейса CUC. Так же как и CUCM, Unity использует операционную систему на базе Linux с базой данных IBM Informix. Схожесть интерфейса, обеспечит быструю адаптацию администратора к интерфейсу Unity Connection. Более того, многие конфигурационные параметры настраиваются идентично на CUCM и CUC, например, такие как настройка интеграции с AD по протоколу Lightweight Directory Access Protocol (LDAP). Итог В итоге, хочется подчеркнуть следующие особенности Cisco Unity Connection: Обеспечение обмена голосовой почтой для 20 000 пользователей в рамках одного сервера. CUC использует VPIM для увеличение числа пользователей (свыше 20 000) Cisco Unity Connection использует ОС Linux и базу данных IBM Informix для хранения конфигурации и сообщений.
img
В этой статье описывается конфигурация, необходимая на маршрутизаторе Cisco для получения сведений о системе доменных имен (DNS) от поставщика услуг и передачи их внутренним пользователям с помощью DHCP. Протокол DNS используется для разрешения полного доменного имени (FQDN) на его соответствующий IP-адрес. Получение DNS IP адреса от провайдера с помощью PPP В большинстве корпоративных сетей, где локальный DNS-сервер недоступен, клиенты должны использовать службу DNS, предоставляемую провайдером, или настроить общедоступный DNS-сервер в свободном доступе. Рис. 1.1 DNS IP-адрес от провайдера с использованием PPP Настройка локального DHCP-сервера на маршрутизаторе Cisco Выполните настройку основных параметров DHCP на маршрутизаторе Cisco и включите его для того, чтобы он действовал как DHCP-сервер для локальной сети. Во-первых, включите службу DHCP на маршрутизаторе Cisco. R1(config)#service dhcp Затем создайте пул DHCP, определяющий сетевую подсеть, которая будет передана в аренду DHCP-клиентам в локальной сети. ip dhcp pool LAN_MY network 192.168.1.0 255.255.255.0 default-router 192.168.1.1 dns-server 192.168.1.1 Здесь пул DHCP был назван как LAN_MY. Оператор network задает подсеть и маску пула адресов DHCP default-router указывает IP-адрес маршрутизатора по умолчанию для DHCP-клиента. Это должен быть IP-адрес в той же подсети, что и клиент DNS-сервер задает IP-адрес DNS-сервера, который доступен для DHCP-клиента Включите DNS-сервер на маршрутизаторе Cisco В режиме глобальной конфигурации включите службу DNS на маршрутизаторе. R1(config)#ip dns server Конфигурация для ретрансляции публичной службы DNS от провайдера через PPP Для того, чтобы получить Public DNS от провайдера, необходимо настроить ppp ipcp dns request на Dialer интерфейсе. R1(config)#interface dialer 1 R1(config-if)#ppp ipcp dns request Когда все вышеперечисленные конфигурации будут выполнены: Команда ppp ipcp dns request сначала помогает получить информацию о публичном DNS-сервере от провайдера через ipcp-фазу согласования PPP. Затем команда ip dns server позволяет маршрутизатору начать действовать в качестве самого DNS-сервера. Однако маршрутизатор в конечном итоге использует Public DNS service от провайдера для разрешения доменных имен Кроме того, когда локальный DHCP-сервер раздаст IP-адреса клиентам, он будет представлять себя как DNS-сервер. Все входящие запросы разрешения DNS от клиентов будут обрабатываться маршрутизатором с использованием Public DNS Проверка Шаг 1: Запустите debug ppp negotiation и внимательно прочитайте информацию о IPCP, чтобы проверить, предоставляется ли информация о DNS-сервере провайдером. Шаг 2: выполните команду show ppp interface virtual-access, чтобы узнать о различных параметрах, успешно согласованных во время настройки PPP. R1# show ppp interface virtual-access 3
img
Предыдущая статья из цикла про популярные приложения TCP/IP тут. Установление TCP-соединения происходит до того, как любая из других функций TCP сможет начать свою работу. Установление соединения относится к процессу инициализации полей "Sequence" и "Acknowledgment" и согласования используемых номеров портов. На рисунке 5 показан пример процесса установления соединения. Этот трехсторонний процесс установления соединения (также называемый трехсторонним рукопожатием) должен завершиться до начала передачи данных. Соединение существует между двумя сокетами, хотя в заголовке TCP нет единственного поля сокета. Из трех частей сокета подразумеваются IP-адреса на основе IP-адресов источника и назначения в IP-заголовке. TCP подразумевается, потому что используется заголовок TCP, как указано значением поля протокола в заголовке IP. Следовательно, единственные части сокета, которые необходимо закодировать в заголовке TCP, - это номера портов. TCP сообщает об установлении соединения, используя 2 бита в полях флагов заголовка TCP. Эти биты, называемые флагами SYN и ACK, имеют особенно интересное значение. SYN означает "синхронизировать порядковые номера", что является одним из необходимых компонентов при инициализации TCP. На рисунке 6 показано завершение TCP-соединения. Эта четырехсторонняя последовательность завершения проста и использует дополнительный флаг, называемый битом FIN. (FIN - это сокращение от "finished", как вы могли догадаться.) Одно интересное замечание: перед тем, как устройство справа отправит третий сегмент TCP в последовательности, оно уведомляет приложение о том, что соединение прерывается. Затем он ожидает подтверждения от приложения перед отправкой третьего сегмента на рисунке. На случай, если приложению потребуется некоторое время, чтобы ответить, ПК справа отправляет второй поток на рисунке, подтверждая, что другой ПК хочет разорвать соединение. В противном случае ПК слева может повторно отправить первый сегмент. TCP устанавливает и завершает соединения между конечными точками, а UDP - нет. Многие протоколы работают в рамках одних и тех же концепций, поэтому термины "ориентированный на соединение" и "без установления соединения" используются для обозначения общей идеи каждого из них. Более формально эти термины можно определить следующим образом: Протокол, ориентированный на соединение: протокол, который требует обмена сообщениями до начала передачи данных или который имеет требуемую предварительно установленную корреляцию между двумя конечными точками. Протокол без установления соединения: протокол, который не требует обмена сообщениями и не требует предварительно установленной корреляции между двумя конечными точками. Восстановление после ошибок и надежность TCP обеспечивает надежную передачу данных, что также называется reliability or error recovery. Для обеспечения надежности TCP нумерует байты данных, используя поля "Sequence" и "Acknowledgment" в заголовке TCP. TCP обеспечивает надежность в обоих направлениях, используя поле Sequence Number одного направления в сочетании с полем Acknowledgment в противоположном направлении. На рисунке 7 показан пример того, как поля TCP Sequence и Acknowledgment позволяют ПК отправлять 3000 байтов данных на сервер, при этом сервер подтверждает получение данных. Сегменты TCP на рисунке расположены по порядку, сверху вниз. Для простоты все сообщения содержат 1000 байтов данных в части данных сегмента TCP. Первый порядковый номер - красивое круглое число (1000), опять же для простоты. В верхней части рисунка показаны три сегмента, каждый из которых на 1000 больше предыдущего, что указывает на первый из 1000 байтов сообщения. (То есть в этом примере первый сегмент содержит байты 10001999; второй - байты 20002999, а третий - байты 30003999.) Четвертый сегмент TCP на рисунке - единственный, который возвращается от сервера к веб-браузеру - подтверждает получение всех трех сегментов. Как? Значение подтверждения 4000 означает: "Я получил все данные с порядковыми номерами на единицу меньше 4000, поэтому я готов принять ваш байт 4000 следующим". (Обратите внимание, что это соглашение о подтверждении путем перечисления следующего ожидаемого байта, а не номера последнего полученного байта, называется прямым подтверждением.) Однако этот пример не исправляет никаких ошибок; он просто показывает основы того, как хост-отправитель использует поле порядкового номера для идентификации данных, а хост-получатель использует прямые подтверждения для подтверждения данных. Более интересное обсуждение вращается вокруг того, как использовать эти же инструменты для восстановления ошибок. TCP использует поля "Sequence" и "Acknowledgment", чтобы принимающий хост мог заметить потерю данных, попросить отправляющий хост повторно отправить, а затем подтвердить, что повторно отправленные данные прибыли. Существует множество вариантов того, как TCP выполняет исправление ошибок. На рисунке 8 показан только один такой пример, детализация которого аналогична предыдущему. Веб-браузер снова отправляет три сегмента TCP, снова по 1000 байт каждый, снова с легко запоминающимися порядковыми номерами. Однако в этом примере второй сегмент TCP не может пройти через сеть. Рисунок указывает на три набора идей, лежащих в основе того, как думают два хозяина. Во-первых, справа сервер понимает, что он не получил все данные. Два полученных сегмента TCP содержат байты с номерами 10001999 и 30003999. Очевидно, сервер не получил байты, пронумерованные между ними. Затем сервер решает подтвердить все данные вплоть до потерянных, то есть отправить обратно сегмент с полем подтверждения, равным 2000. Получение подтверждения, которое не подтверждает все данные, отправленные на данный момент, заставляет хост-отправитель повторно отправить данные. ПК слева может подождать несколько секунд, чтобы убедиться, что другие подтверждения не поступят (используя таймер, называемый таймером повторной передачи), но вскоре решит, что сервер сообщает: "Мне действительно нужно 2000 - отправьте его повторно". ПК слева делает это, как показано на пятом из шести сегментов TCP на рисунке. Наконец, обратите внимание, что сервер может подтверждать не только повторно отправленные данные, но и любые предыдущие данные, которые были получены правильно. В этом случае сервер получил повторно отправленный второй сегмент TCP (данные с порядковыми номерами 20002999), и сервер уже получил третий сегмент TCP (данные с номерами 30003999). Следующее поле подтверждения сервера подтверждает данные в обоих этих сегментах с полем подтверждения, равным 4000. Управление потоком с использованием окон TCP реализует управление потоком, используя концепцию окна, которая применяется к количеству данных, которые могут быть ожидающими подтверждения в любой момент времени. Концепция окна позволяет принимающему хосту сообщать отправителю, сколько данных он может получить прямо сейчас, давая принимающему хосту способ замедлить или ускорить отправляющий хост. Получатель может перемещать размер окна вверх и вниз (это называется скользящим окном или динамическим окном), чтобы изменить объем данных, который может отправить хост-отправитель. Механизм раздвижного окна имеет больше смысла на примере. В примере, показанном на рисунке 9, используются те же основные правила, что и в примерах на нескольких предыдущих рисунках. В этом случае ни один из сегментов TCP не содержит ошибок, и обсуждение начинается на один сегмент TCP раньше, чем на предыдущих двух рисунках. Начнем с первого сегмента, отправленного сервером на ПК. Поле Acknowledgment должно быть вам знакомо: оно сообщает ПК, что сервер ожидает следующий сегмент с порядковым номером 1000. Новое поле, поле окна, установлено на 3000. Поскольку сегмент передается на ПК, это значение сообщает ПК, что ПК может послать не более 3000 байтов по этому соединению до получения подтверждения. Итак, как показано слева, ПК понимает, что может отправлять только 3000 байтов, и прекращает отправку, ожидая подтверждения, после отправки трех 1000-байтовых сегментов TCP. Продолжая пример, сервер не только подтверждает получение данных (без потерь), но и решает немного увеличить размер окна. Обратите внимание, что второе сообщение, идущее справа налево на рисунке, на этот раз с окном 4000. Как только ПК получает этот сегмент TCP, ПК понимает, что он может отправить еще 4000 байтов (окно немного больше, чем предыдущее значение). Обратите внимание, что хотя на последних нескольких рисунках показаны примеры с целью объяснения того, как работают механизмы, из этих примеров может сложиться впечатление, что TCP заставляет хосты сидеть и долго ждать подтверждения. TCP не хочет заставлять хост-отправитель ждать отправки данных. Например, если подтверждение получено до того, как окно будет исчерпано, начинается новое окно, и отправитель продолжает отправлять данные до тех пор, пока текущее окно не будет исчерпано. Часто в сети, где мало проблем, мало потерянных сегментов и небольшая перегрузка, окна TCP остаются относительно большими, а узлы редко ждут отправки. Закрепим самое важное про TCP и UDP в следующей статье.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59