По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Протоколы API, как и все в этом мире, активно развиваются. Многие компании, включая GraphQL, gRPC и Thrift, пользуются классическими API SOAP и REST. В списке этих API есть и JSON-RPC. JSON-RPC, созданный для быстрой разработки многофункциональных сайтов, быстро стал лучшим другом разработчиков. Давайте разберемся, что это такое, и в чем оно полезно специалистам по разработке приложений и API. Знакомство с JSON-RPC начинается с азов JSON. Так что первая глава данной статьи посвящена общей информации о JSON. JSON – что это такое, и как оно работает JSON – это легковесный формат обмена сообщениями, который подходит для более быстрой передачи данных. Именно поэтому он так активно используется в современной разработке. JSON (JavaScript Object Notation, или нотация объектов JavaScript) производит многократную разбивку данных до тех пор, пока они не примут удобный для обработки вид. В основе JSON лежит JavaScript, поэтому просматривая элементы данных, вы не раз встретите строки, нулевые символы, объекты и бинарные переменные. JSON разбивает сложные сопоставленные данные на управляемые структуры, облегчая обработку данных на многих языках программирования, и считается независимым от языка ресурсом. Его придумал Дуглас Крокфорд в 2000 году с целью упрощения взаимодействия между веб-приложениями и сервером. Что такое JSON RPC? JSON-RPC – это не что иное, как преемник JSON, повсеместно признанный протокол для удаленного вызова процедур (RPC - Remote Procedure Calls). Работая на уровне разработки, JSON-RPC запускает различную структуру данных, определяя задачи для приложений. Это сравнительно новый протокол с узкой областью применения.  Наборы команд, гибкость и сценарии развертывания – все работает с ограничениями. Но, тем не менее, разработчики видят в нем идеальный вариант для простой и быстрой разработки. В простых сценариях данные ограничения не являются помехой и побуждают разработчиков переходить с REST на JSON-RPC. Стоит также добавить, что: JSON-RPC определяет сетевые ограничения, связанные с обработкой данных. Легкая конструкция и быстрая обработка – все это подходит для инициации передачи данных с узлами Ethereum. Будучи транспортно-независимым протоколом, JSON-RPC может использовать для взаимодействия сокеты и HTTP. Это отличное решение для разработки решений на базе Ethereum с использованием блокчейн. В настоящий момент предлагается 2 стандарта JSON-RPC: JSON-RPC 1.0 и JSON-RPC 2.0: JSON-RPC 1.0 не хватает возможностей сразу по нескольким пунктам. Отсутствие названий параметров и пояснений к ошибкам вызывает куда больше проблем, чем кажется. Скорее уж, это метод для одноранговой передачи данных. Обновленный JSON RPC 2.0 значительно доработали, заполнив ряд пробелов предыдущей версии. Версию 1.0. заменили клиент-серверной 2.0. Кроме того, в 2.0. появились транспортные зависимости. Разумеется, со временем добавили именованные параметры. Поля урезали. Нет ID для уведомлений; в качестве ответа отправляется только результат/ошибка. В обновленной версии есть дополнительные расширения с информацией об ошибках.  Как пользоваться JSON RPC? Главная функция протокола заключается в отправке клиентских запросов на сервер (при поддержке JSON-RPC). Здесь под клиентом мы подразумеваем общепринятые приложения, которые развертываются для получения запроса от удаленной системы на консолидированный метод. Введенные параметры передаются удаленной системе в формате массива или объекта. В зависимости от используемой версии JSON-RPC, удаленная система будет отправлять в источник запроса разные итоговые значения. Все веб-передачи через JSON-RPC унифицированы и сериализированы с помощью JSON. Запрос JSON-RPC – это вызов удаленного метода. Он состоит из 3 элементов: Метод. Указывает на строку, которая будет запрашиваться при вызове метода. Существует набор зарезервированных имен с префиксом ‘rpc’ – они предназначаются для внутренних вызовов RPC. Параметры. Второй элемент JSON-RPC (объект или массив) со значением параметра, который будет переноситься. Параметры не вызываются в каждом вызове.  ID. Целое или строковое число, которое регулярно используется для поддержания баланса между запросами и ответами. Если на запрос нет ответа, то ID автоматически удаляется. В запросе JSON-RPC получатель обязан вернуться к проверенному ответу на каждый полученный запрос. Добавляются 3 компонента: Результат – первая и важнейшая часть запроса, передающая данные, которые возвращает вызываемый метод. Его часто называют JSON-stat, и при ошибке он остается пустым. Ошибка – второй компонент. Появляется, если в процессе вызова что-то идет не так. В ошибке отображаются код и сообщение. ID ответа указывает на запрос, по которому приходит ответ. Если ответов не требуется, то JSON-RPC использует уведомление, в котором написано, что запрос был без ID. В версии 1.0 ID уведомление приходит пустым, а в версии 2.0. оно полностью отсутствует. Плюсы от использования JSON-RPC JSON-RPC – это довольно «умный» протокол, который предлагает своим клиентам множество плюсов: Простая обработка JSON-RPC намного проще, чем REST. Его легко понимают люди и машины. Здесь нет сложных команд и наборов данных, так что JSON-RPC идеально подходит для начинающих разработчиков. Этот протокол Unicode предлагает компактную командную строку. Кроме того, он способен обрабатывать данные с именованными фразами или отдельными ключевыми словами. Таким образом, JSON-RPC считается простым и понятным инструментом для работы. Быстрое время разработки С JSON-RPC не надо ничего придумывать. Все источники доступны и понятны. Такая простота сокращает время разработки и сроки выхода на рынок. Это самое подходящее решение для разработки приложений в сжатые сроки. Качественный обмен информацией JSON-RPC гарантирует своевременный, быстрый и точный обмен данными, поскольку может обрабатывать уведомления и несколько вызовов. Чтобы продолжить свою работу, ему не нужно ждать ответа от сервера или клиента. Если сделан запрос сообщения, то JSON-RPC гарантированно доставит его «адресату». Не важно, насколько сложные компоненты приложения входят в цепочку коммуникации, JSON-RPC обеспечит должный обмен информацией. Улучшенная производительность API С помощью JSON-RPC можно создавать API, которые не зависят от развертываемого протокола. Такая возможность крайне важна для улучшения производительности API, т.к. заменяет HTTP и TCP, а также снижает рабочую нагрузку. Описание результатов JSON-RPC выдает понятные результаты запроса, которые легко прочитать и обработать. Создание пакетных запросов, объяснение body в HTTP и передача параметров – все это гораздо проще реализовать через JSON-RPC. Улучшенная передача JSON-RPC – это очень удобный для передачи инструмент, ведь поддерживает такие платформы, как XMPP, WebSockets, SFTP, SSH и SCP. Данное разграничение позволяет разрабатывать быстрые, простые в отладке и удобные для пользователя API. Кроме того, этот протокол полностью отделяет запрошенный контент от используемого процесса передачи. А любые ошибки в запросах, данные и предупреждения передаются через полезную информацию запроса. REST и JSON-RPC: что выбрать для разработки API?  Богатый выбор API-ресурсов – это всегда хорошо, но остановиться на каком-то одном варианте бывает не так просто. Ниже мы постараемся помочь разработчикам и объясним ключевые особенности популярных протоколов.  JSON-RPC подходит для начинающих разработчиков с ограниченным количеством ресурсов. JSON-RPC – это очень ограниченный в ресурсах протокол, который отлично выполняет свою функцию. Кроме того, если цель разработчика хоть как-то связана с технологией распределенных реестров, то единственным жизнеспособным решением станет именно JSON-RPC. С таким развертыванием не сможет справиться ни один другой протокол. Для разработки приложений, использующих технологии распределенных реестров, требуется независимый от протокола API, и JSON-RPC отлично подходит. Он позволяет разработчикам создавать API, которые могут взаимодействовать друг с другом с помощью любого протокола. Есть еще одна область, в которой JSON-RPC превосходит REST. В REST доступен ограниченный набор глаголов, что приводит к ошибкам при выполнении операции. При использовании REST необходимо подробно описать HTTP-метод, и на это тратится много времени. Кроме того, в REST доступны только CRUD-операции. Так что лучше отдавать предпочтение JSON-RPC. Тем не менее JSON-RPC нельзя назвать универсальным решением для всего. Его проблема заключается во взаимозависимости. Клиенты должны быть тесно связаны с реализацией служб, поэтому вносить изменения в эту реализацию довольно сложно. При попытке изменить что-то, клиенты чаще всего ломаются. REST решает такие задачи намного лучше. Например, API на базе REST мало того, что легко создаются, так еще и не отслеживают состояния. Этот протокол совместим с HTTP и предлагает огромное множество HTTP-библиотек. REST позволяет создавать гибкие API. Это идеальное решение для CRUD-операций. Оба протокола имеют свои плюсы и минусы. Разработчикам необходимо принять взвешенное решение, исходя из главной цели разработки. Например, если разработчику нужны высокопроизводительные вычисления, то стоит остановиться на JSON-RPC. Если требуется независимая разработка приложения с удобным интерфейсом, то смело выбирайте REST. Не стоит также забывать о безопасности API. JSON-RPC, graphql, grpc Два самых известных аналога JSON-RPC – это GraphQL и gRPC. GraphQL – это полностью адаптивная система. Она используется для точной локализации данных запроса и получения только необходимых запрашиваемых данных. Основная черта – ориентация на клиента. Сервер практически никак не участвует в веб-передаче. Клиент сам устанавливает правила для обработки запрошенных данных. GraphQL относится к языкам запросов, а JSON-RPC относится к удаленному вызову процедур. Еще есть gRPC – легковесный протокол с акцентом на производительность. Это обновленная версия RPC. В JSON-RPC серверы и клиенты договариваются о запрашиваемых данных, а архитектура не важна. А в gRPC, наоборот, запросы обрабатываются по готовой схеме. Этот протокол может выполняться в любой экосистеме. JSON-RPC интегрируется с MQTT, Python и Kallithea. Для gRPC доступны такие ресурсы, как .NET, JavaScript, C++, Swift и многие другие. Главные отличия между всеми решениями заключаются в открытости кода и удобстве для клиентов.
img
Ваш клиент хочет перестроить свою систему IP-телефона или, возможно, впервые перейти на нее. Вы придете к нему с проприетарной системой, например, CUCM, или открытой стандартной системой, например, Asterisk? Прежде чем сделать выбор, важно не упускать сразу ни один из вариантов. Понимание всех входов и выходов каждого типа системы, а также конкретных требований вашего клиента имеет важное значение. Давайте рассмотрим некоторые сильные и слабые стороны каждого подхода. Положительные и отрицательные стороны открытых АТС АТС с открытым стандартом являются решениями с открытым стеком, использующими стандартный подход - например, SIP - для передачи мультимедийных сообщений. Широко распространенные и признанные благодаря своей универсальности в использовании и гибкости, системы АТС с открытым стандартом не имеют многих недостатков для многих предприятий сегодня. Наряду с необходимыми функциями телефонии, некоторые передовые решения, также предлагают высококачественные унифицированные коммуникации из коробки. В целом системы АТС с открытым стандартом обеспечивают: Лучшее соотношение цены и качества: Опенсорс АТС часто ассоциируется с существенной экономией, потому что ею легко управлять, и в большинстве случаев нужно беспокоиться о небольших лицензионных сборах. По сравнению с запатентованными решениями, которые заключают вас в долгосрочные контракты на обслуживание или дорогостоящий ремонт системы, решения с открытыми стандартами могут быть более рентабельными во многих бизнес-сценариях. Устранить риск блокировки поставщика: Истинная ценность таких АТС заключается в возможности сочетать набор стандартных компонентов для предоставления инновационных услуг. С системой можно использовать практически любой SIP-телефон, шлюз или периферийные устройства на основе стандарта, что способствует удовлетворенности пользователей и производительности бизнеса. Проще установить и настроить: Если вы используете проприетаруню телефонную систему, вы, вероятно, уже знаете о трудностях, возникающих при ее установке, использовании и обслуживании. Вместо этого системы АТС открытого стандарта просты в использовании и управлении. Это может быть особенно актуально для тех, кто использует Asterisk с интуитивно понятным интерфейсом. Совместимость и настройка: Кастомизация очень важна для телефонных систем. И на этом этапе выигрывают АТС открытого стандарта. Относительно легко интегрироваться с другими стандартными приложениями, такими как базы данных, CRM, PMS отеля, колл-центр и другие, чтобы удовлетворить специфические потребности клиентов. Хотя АТС с открытым стандартом, по большому счету, не имеют многих недостатков, качество всей системы сильно зависит от поставщиков и интеграторов. Некоторые, выбравшие бесплатные открытые решения утверждают, что им не хватает нужных функций, профессиональной поддержки и частых обновлений. Положительные и отрицательные стороны проприетарной АТС Проприетарной АТС являются «закрытой» системой, разработанной специально производителями, в комплекте с собственным брендом. Большинство проприетарных решений, таких как NEC или Panasonic, считаются относительно надежными, но менее привлекательными с финансовой точки зрения. С проприетарной системой вы получаете практически все ваше оборудование и программное обеспечение от одного поставщика, который будет поддерживать и гарантировать все, от АТС до мобильных телефонов. Таким образом, некоторые из преимуществ включают в себя: Единый пользовательский опыт: В большинстве случаев проприетарные системы предлагают единый пользовательский интерфейс. Вся система VoIP остается согласованной для всех совместимых аппаратных и программных приложений. Таким образом, вы можете ожидать аналогичного и знакомого взаимодействия с каждым устройством. Поддержка производителя: Благодаря проприетарной системе ваш поставщик имеет единоличный контроль над обновлениями, обновлениями и модификациями. Как следствие, вы, как торговый посредник или дистрибьютор, могли бы иметь больший контроль над клиентами, но вам нужно будет вкладывать больше ресурсов в освоение сложных запатентованных систем и интерфейсов для лучшей поддержки клиентов. Наряду с преимуществами проприетарного решения, есть некоторые недостатки, которыми нельзя пренебрегать. Самые большие из них могут быть связаны с затратами, риском блокировки поставщиков и ограниченной гибкостью. Многие запатентованные продукты могут функционировать должным образом только при использовании с другими продуктами того же производителя. Другими словами, вы, скорее всего, будете заложниками проприетарных мобильных телефонов и периферийных устройств, которые могут быть переоценены с ограниченной функциональностью, что приведет к негативным последствиям в процессе продаж. Еще одна важная вещь, которую следует помнить, это то, что с проприетарной системой АТС вы не сможете достичь того же уровня гибкости, что и решения с открытыми стандартами. Поскольку проприетарные решения обычно не допускают обходных путей для разработчиков, специфичных для данной проблемы, скорее всего, вы не сможете реализовать наименьшие изменения, необходимые для лучшей адаптации решения к потребностям вашего бизнеса. И когда возникают сложные проблемы, ваш поставщик является вашей единственной резервной копией. Предвидение: бизнес-экосистема и возможности В условиях постоянно расширяющегося горизонта и достижений на рынке VoIP ключом к тому, чтобы телефонная система оставалась впереди, было стремление идти в ногу с рыночными тенденциями и предлагать жизнеспособные решения, чтобы вписаться в более широкий спектр потребностей клиентов. И нельзя отрицать, что решения открытых стандартов имеют конкурентные преимущества. Роль собственности как первичного новатора на рынке ушла на второй план. Распространенность промышленных открытых стандартов, таких как SIP и телефония с открытым исходным кодом, таких как Asterisk, произвела революцию в экосистеме и принесла больше возможностей для бизнеса. Используя коллективные усилия огромного мирового сообщества экспертов, новые непатентованные, то есть открытые, системы набирают обороты. Они приносят преимущества, связанные с открытым SIP и открытым исходным кодом: стабильность, быстрое развитие, гибкость и, самое главное, экономия затрат. Благодаря постоянно развивающимся решениям открытого стандарта пользователям теперь предоставляется больше свободы для взаимодействия нескольких приложений и интеграции систем данных. Интеграторы все чаще хотят их, а конечные пользователи требуют от них более высокого уровня соотношения цена-качество и устранения риска привязки к поставщику. Итого И проприетарные, и открытые стандартные системы имеют свои явные преимущества. Важно знать своих клиентов и понимать их потребности. Сколько они могут позволить себе новую телефонную систему? Какой уровень гибкости и настройки они требуют? Есть ли у них собственный опыт по обслуживанию системы? Задавая правильные вопросы, вы сможете сделать выбор, чтобы предложить наилучшее решение.
img
Четвертая часть тут Описанные до сих пор технологии—коммутация каналов и пакетов, плоскости управления и QoS—очень сложны. На самом деле, по-видимому, нет конца растущей сложности сетей, особенно по мере того, как приложения и предприятия становятся все более требовательными. В этой лекции будут рассмотрены два конкретных вопроса, связанных со сложностью и сетями: Что такое сложность сети? Можно ли «решить» сложность сети? Почему сети должны быть сложными? Хотя наиболее очевидным началом понимания темы может быть определение сложности, но на самом деле более полезно рассмотреть вопрос, почему сложность требуется рассмотреть в более общем смысле. Проще говоря, возможно ли «решить» сложность? Почему бы просто не проектировать более простые сети и протоколы? Почему каждая попытка сделать что-то более простое в сетевом мире в конечном итоге явно усложняет ситуацию в долгосрочной перспективе? Например, благодаря туннелированию поверх (или через) IP сложность плоскости управления снижается, а сеть в целом упрощается. Почему тогда туннельные оверлеи сложны? Есть два ответа на этот вопрос. Во-первых, поскольку человеческая природа является тем, чем она является, инженеры всегда будут изобретать десять различных способов решения одной и той же проблемы. Это особенно верно в виртуальном мире, где новые решения (относительно) просты в развертывании, (относительно) легко найти проблему с последним набором предлагаемых решений, и (относительно) легко создать новое решение, которое «лучше старого». Это особенно верно с точки зрения поставщика, когда создание чего-то нового часто означает возможность продавать совершенно новую линейку продуктов и технологий, даже если эти технологии очень похожи на старые. Другими словами, виртуальное пространство настолько хаотично, что там легко создать что-то новое. Второй ответ, однако, заключается в более фундаментальной проблеме: сложность необходима, чтобы справиться с неопределенностью, связанной с трудноразрешимыми проблемами. Добавление сложности, по-видимому, позволяет сети легче справляться с будущими требованиями и неожиданными событиями, а также предоставлять больше услуг по меньшему набору базовых функций. Если это так, то почему бы просто не построить единый протокол, работающий в одной сети, способный обрабатывать все требования, потенциально предъявляемые к нему, и может обрабатывать любую последовательность событий, которую вы можете себе представить? Одна сеть, работающая по одному протоколу, безусловно, уменьшит количество «движущихся частей», с которыми приходится работать сетевым администраторам, и сделает нашу жизнь проще, верно? На самом деле существует целый ряд различных способов управления сложностью, например: Абстрагируйтесь от сложности, чтобы построить black box вокруг каждой части системы, чтобы каждая часть и взаимодействие между этими частями были более понятны сразу. Переместите сложность в другую область — чтобы переместить проблему из области сетей в область приложений, кодирования или протокола. Как говорится в RFC1925 «Проще переместить проблему (например, переместив ее в другую часть общей сетевой архитектуры), чем решить ее» Добавьте еще один слой сверху, чтобы рассматривать всю сложность как black box, поместив другой протокол или туннель поверх того, что уже есть. Возвращаясь к RFC1925 «Всегда можно добавить еще один уровень indirection» Проникнитесь сложностью, обозначьте то, что существует как «наследие», и гонитесь за какой-то новой блестящей вещью, которая, как считается, способна решить все проблемы гораздо менее сложным способом. Игнорируя проблему и надеясь, что она уйдет. Аргументация в пользу исключения «только на этот раз», так что конкретная бизнес-цель может быть достигнута или какая-то проблема устранена в очень сжатые сроки, с обещанием, что проблема сложности будет решена «позже», является хорошим примером. Каждое из этих решений, однако, имеет ряд компромиссов для рассмотрения и управления. Кроме того, в какой-то момент любая сложная система становится хрупкой - прочной, но хрупкой. Система является надежной, но хрупкой, когда она способна устойчиво реагировать на ожидаемый набор обстоятельств, но неожиданный набор обстоятельств приведет к ее отказу. Определение Сложности Учитывая, что сложность необходима, инженеры должны научиться управлять ею каким-то образом, находя или создавая модель, или структуру. Лучше всего начать построение такой модели с самого фундаментального вопроса: что означает сложность в терминах сетей? Можно ли поставить сеть на весы и сделать так, чтобы стрелка указывала на «комплекс»? Существует ли математическая модель, в которую можно включить конфигурации и топологию набора сетевых устройств для получения «индекса сложности»? Как понятия масштаба, устойчивости, хрупкости и элегантности соотносятся со сложностью? Лучшее место для начала построения модели — это пример. Состояние Control Plane в зависимости от протяженности. Что такое протяженность сети? Проще говоря, это разница между кратчайшим путем в сети и путем, который фактически принимает трафик между двумя точками. Рисунок 1 иллюстрирует эту концепцию. Если предположить, что стоимость каждого канала в этой сети равна 1, то кратчайший физический путь между маршрутизаторами A и C также будет кратчайшим логическим путем: [A,B, C]. Однако что произойдет, если метрика на ссылке [A,B] изменится на 3? Самый короткий физический путь по-прежнему [A,B,C], но самый короткий логический путь теперь [A,D,E,C]. Разница между кратчайшим физическим путем и кратчайшим логическим путем-это расстояние, которое должен пройти пакет, пересылаемый между маршрутизаторами A и C—в этом случае протяженность может быть вычислена как (4 [A,D,E,C])?(3 [A,B, C]), для протяженности 1. Как измеряется протяженность? Способ измерения протяженности зависит от того, что является наиболее важным в любой конкретной ситуации, но наиболее распространенным способом является сравнение количества прыжков в сети, как это используется в приведенных здесь примерах. В некоторых случаях может оказаться более важным рассмотреть метрику по двум путям, задержку по двум путям или какую-то другую метрику, но важно последовательно измерять ее по всем возможным путям, чтобы обеспечить точное сравнение между путями. Иногда бывает трудно отличить физическую топологию от логической. В этом случае была ли метрика канала [A,B] увеличена, потому что канал связи на самом деле является более медленной линией связи? Если да, то является ли это примером протяженности или примером простого приведения логической топологии в соответствие с физической топологией, спорно. В соответствии с этим наблюдением, гораздо проще определить политику с точки зрения протяженности, чем почти любым другим способом. Политика — это любая конфигурация, которая увеличивает протяженность сети. Использование Policy-Based Routing или Traffic Engineering для перенаправления трафика с кратчайшего физического пути на более длинный логический путь, например, для уменьшения перегрузки в определенных каналах, является политикой - она увеличивает протяженность. Увеличение протяженности — это не всегда плохо. Понимание концепции протяженности просто помогает нам понять различные другие концепции и поставить рамки вокруг компромиссов сложности и оптимизации. Самый короткий путь, с физической точки зрения, не всегда лучший путь. Протяженность, на этом рисунке, очень простая—она влияет на каждый пункт назначения и каждый пакет, проходящий через сеть. В реальном мире все гораздо сложнее. Протяженность фактически приходится на пару источник / приемник, что делает ее очень трудной для измерения в масштабах всей сети. Определение сложности: модель А Три компонента - state, optimization, и surface, являются общими практически в каждом решении по проектированию сети или протокола. Их можно рассматривать как набор компромиссов, как показано на рисунке 2 и описано в следующем списке. Увеличивающаяся оптимизация всегда движется в направлении большего количества состояний или большего количества поверхность взаимодействия. Уменьшающееся состояние всегда движется в сторону меньшей оптимизации или большего количества поверхности взаимодействия. Уменьшение поверхности взаимодействия всегда приводит к меньшей оптимизации или большему состоянию. Конечно, это не железные правила; они зависят от конкретной сети, протоколов и требований, но они, как правило, достаточно верны, чтобы сделать эту модель полезной для понимания компромиссов в сложности. Поверхность взаимодействия. Хотя понимание определения состояние и оптимизация интуитивно понятны, стоит потратить еще немного времени на понимание понятия поверхности взаимодействия. Концепция поверхностей взаимодействия трудна для понимания прежде всего потому, что она охватывает широкий спектр идей. Возможно, был бы полезен данный пример. Предположим, что функция, которая: Принимает два числа в качестве входных данных Добавляет их Умножает полученную сумму на 100 Возвращает результат Эту единственную функцию можно рассматривать как подсистему в некоторой более крупной системе. Теперь предположим, что вы разбили эту единственную функцию на две функции, одна из которых выполняет сложение, а другая-умножение. Вы создали две более простые функции (каждая из которых выполняет только одну функцию), но вы также создали поверхность взаимодействия между двумя функциями—вы создали две взаимодействующие подсистемы внутри системы, где раньше была только одна. В качестве другого примера предположим, что у вас есть две плоскости управления, работающие в одной сети. Одна из этих двух плоскостей управления несет информацию о пунктах назначения, доступных вне сети (внешние маршруты), в то время как другая несет пункты назначения, доступные внутри сети (внутренние маршруты). Хотя эти две плоскости управления являются различными системами, они все равно будут взаимодействовать многими интересными и сложными способами. Например, доступность к внешнему назначению будет обязательно зависеть от доступности к внутренним назначениям между краями сети. Эти две плоскости управления теперь должны работать вместе, чтобы построить полную таблицу информации, которая может быть использована для пересылки пакетов через сеть. Даже два маршрутизатора, взаимодействующие в пределах одной плоскости управления, могут рассматриваться как поверхность взаимодействия. Именно эта широта определения делает очень трудным определение того, что такое поверхность взаимодействия. Поверхности взаимодействия не плохая вещь. Они помогают инженерам и дизайнерам разделить и победить в любой конкретной области проблемы, от моделирования до реализации. Управление сложностью через Wasp Waist. Wasp waist, или модель песочных часов, используется во всем мире и широко имитируется в инженерном мире. Хотя инженеры не часто сознательно применяют эту модель, на самом деле она используется постоянно. На рис. 3 показана модель песочных часов в контексте четырехуровневой модели Department of Defense (DoD), которая привела к созданию пакета интернет-протоколов (IP). На нижнем уровне, физической транспортной системе, имеется широкий спектр протоколов, от Ethernet до Satellite. На верхнем уровне, где информация распределяется и представляется приложениям, существует широкий спектр протоколов, от протокола передачи гипертекста (HTTP) до TELNET. Однако, когда вы перемещаетесь к середине стека, происходит забавная вещь: количество протоколов уменьшается, создавая песочные часы. Почему это работает, чтобы контролировать сложность? Если мы вернемся к трем компонентам сложности-состоянию, поверхности и сложности, - то обнаружим связь между песочными часами и сложностью. Состояние делится песочными часами на два разных типа состояния: информация о сети и информация о данных, передаваемых по сети. В то время как верхние уровни занимаются маршалингом и представлением информации в удобной для использования форме, нижние уровни занимаются обнаружением того, какая связь существует и каковы ее свойства на самом деле. Нижним уровням не нужно знать, как форматировать кадр FTP, а верхним уровням не нужно знать, как переносить пакет по Ethernet - состояние уменьшается на обоих концах модели. Поверхности управляются путем уменьшения количества точек взаимодействия между различными компонентами до одного - Интернет-протокола (IP). Эту единственную точку взаимодействия можно четко определить с помощью процесса стандартизации, при этом изменения в одной точке взаимодействия тщательно регулируются. Оптимизация осуществляется путем разрешения одному слою проникать в другой слой, а также путем сокрытия состояния сети от приложений. Например, TCP на самом деле не знает состояния сети, кроме того, что он может собрать из локальной информации. TCP потенциально может быть гораздо более эффективным в использовании сетевых ресурсов, но только за счет нарушения уровня, которое открывает трудноуправляемые поверхности взаимодействия. Таким образом, наслоение многоуровневой сетевой модели — это прямая попытка контролировать сложность различных взаимодействующих компонентов сети. Очень простой закон сложности можно сформулировать так: в любой сложной системе будут существовать наборы трехсторонних компромиссов. Описанная здесь модель State/Optimization/Surface (SOS) является одним из таких компромиссов. Еще один, более знакомый администраторам, работающим в основном с базами данных, - это Consistency/Accessibility/Partitioning (теорема CAP). Еще один, часто встречающийся в более широком диапазоне контекстов, — это Quick /Cost/Quality (QSQ). Это не компоненты сложности, а то, что можно назвать следствиями сложности. Администраторы должны быть искусны в выявлении такого рода компромиссных треугольников, точно понимать «углы» треугольника, определять, где в плоскости возможного лежит наиболее оптимальное решение, и быть в состоянии сформулировать, почему некоторые решения просто невозможны или нежелательны. Если вы не нашли компромиссов, вы недостаточно усердно искали — это хорошее эмпирическое правило, которому следует следовать во всех инженерных работах.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59