По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Цель данной статьи, чтобы разобраться с тем как поправить незначительные ошибки, возникающие в файловых системах. Файловых систем много, поэтому много различных инструментов для работы с ними. Поэтому будет рассказано об основных инструментах к основным стандартным системам Linux. И рассмотрим несколько инструментов к рекомендованным LPIC файловым системам. Рассмотрим, так же журналируемые файловые системы и посмотрим индексные дескрипторы. Проверка целостности файловой системы; Проверка свободного пространства и индексных дескрипторов в файловой системе; Исправление проблем файловой системы. Список утилит: df, du, fsck, debugfs – общие утилиты для всех Linux систем mke2fs, e2fsck, dumpe2fs, tune2fs – утилиты для файловой системы ext xfs_check, xfs_repair, xfs_info, xfs_metadump – утилиты для файловой системы xfs Совершенно понятно, что для других файловых систем есть свои утилиты для работы с данными файловыми сиcтемами. Первая утилита df: man df Данная утилита показывает использование дискового пространства. У данной утилиты достаточно много ключей. Её особенностью является то, что она показывает дисковое пространство в 1 кбайт блоках. Данные цифры не очень понятны и удобны, для того чтобы было удобно можно использовать ключ –h и тогда вид станет удобно читаемым. В выводе команды мы сразу видим размер, сколько использовано, процент использование и точка монтирования. Как мы видим на новом перемонтированном разделе /dev/sdc1 занят 1% дискового пространства. Если посмотреть в папку монтирования раздела, то мы увидим там папку lost+found. Данная папка пуста, но занимает 37 МБ. Есть такое понятие индексные дескрипторы в журналируемых файловых системах inode. Inode – это метка идентификатора файла или по другому индексный дескриптор. В этих индексных дескрипторах хранится информация о владельце, типе файла, уровне доступа к нему. И нужно понимать, что для каждого файла создается свой отдельный inode. Команда df –I может показать нам inode. Число, например, inode напротив /dev/sda2 показывает сколько inode всего может быть на устройстве, далее сколько используется и сколько свободно. Обычно под inode отдается примерно 1% жесткого диска. И получается, что больше чем число inode на устройстве файлов и папок быть не может. Количество inode зависит от типа файловой системы. Далее мы рассмотрим, как пользоваться inode. Следующая команда du man du Данная команда показывает, что и сколько занимает у нас места на жестком диске, а именно размер папок в текущей директории. Если посмотреть вывод данной команды без ключей, то мы увидим список папок в текущей директории и количество блоков, с которым очень неудобно работать. Чтобы перевести данные блоки в человеческий вид, то необходимо дать ключ –h. А для еще большего удобства, можно установить замечательную утилиту ncdu простой командой. sudo apt install ncdu –y После установки нужно запустить ncdu. И мы увидим очень красивую картинку. Но вернемся к стандартной утилите du. С помощью данной утилиты мы можем указать в какой папке необходим просмотр папок и вывод их размера. du –h /home К сожалению данная утилита умеет взвешивать вес только каталогов и не показывает размер файлов. Для того, чтобы посмотреть размер файлов, мы конечно же можем воспользоваться командой ls –l. А также если мы запустим данную команду с ключем –i мы увидим номера inode файлов. Как вы видите у каждой папки и у каждого файла есть свой индексный дескриптор. Далее команды, которые нам позволят проверить целостность файловой системы. Команда fsck man fsck Как написано в описании утилиты она позволяет проверять и чинить Linux файловую систему. Мы можем видеть, например, в oперационной системе Windows, что в случае некорректного завершения работы операционной системы, операционная система запускает утилиту проверки целостности checkdisk. В случае необходимости данная утилита исправляет найденные ошибки в файловой системе. Следовательно, в Linux данные операции выполняет утилита fsck, причем может работать с различными файловыми системами Linux операционных систем. Мы можем попробовать воспользоваться утилитой fsck /dev/sdc1. В ответ от операционной системы мы получим следующее: Как мы видим операционная система вернула в ответ на команду для работы с данным разделом, что данный раздел с монтирован и операция прервана. Аналогичную ситуацию мы будем наблюдать в операционной системе Windows, если мы будем пытаться рабочий раздел проверить на ошибки. Т.е возникнет следующая ситуация. Если мы будем проверять дополнительный логический диск, где не установлена операционная система Windows, то данный раздел на время проведения тестов будет отключен и будут идти проверки. А если мы попытаемся проверить основной раздел, куда установлена операционная система Windows, то операционная система не сможет запустить данную утилиту и попросит перезагрузиться для запуска данной утилиты. В нашем случае придется делать точно так же. Поэтому, чтобы проверить необходимо отключить (от монтировать раздел) и после уже этого запускать утилиту. Из вывода можно заметить утилита пыталась запустить другую утилиту e2fsck, которая в данном случае отвечает за проверку файловых систем extext2ext3ext4. О чем достаточно подробно написано в описании данной утилиты. По сути fsck запускает утилиту ту, которая идет в пакете утилит для конкретной файловой системы. Бывает такое, что fsck не может определить тип файловой системы. Для того, чтобы утилита все-таки проверила файловую систему, необходимо отмонтировать логический раздел. Воспользуемся командой umount /mnt. И запускаем непосредственно саму проверку fsck –t ext4 /dev/sdc1 Проходит проверка моментально. Команда fsck запустилась и запустила необходимую утилиту для файловой системы. По результатам проверки файловая система чистая, найдено 11 файлов и 66753 блока. При обнаружении проблем, утилита предложила нам исправить. Для того, чтобы посмотреть на проверку другой файловой системы, необходимо переформатировать раздел. mkfs –t xfs –f /dev/sdc1 При попытке запуска проверки без указания типа файловой системы fsck /dev/sdc1 Как мы видим, утилита fsck отказалась проверять или вызывать утилиту, а явно указала на ту которую необходимо использовать в данном случае. Для проверки используем xfs_ncheck /dev/sdc1. А для починки файловой системы xfs_repair /dev/sdc1. Перемонтируем обратно наш раздел mount /dev/sdc1 /mnt Теперь можно получить информацию по разделу xfs_info /dev/sdc1 Или сделать дамп файловой системы xfs_metadump /dev/sdc1 dump.db Переформатируем файловую систему ext4 на разделе обратно /dev/sdc1. Перемонтируем в папку mnt. Создадим текстовый файл с текстом на данном разделе nano /mnt/test.txt Далее мы можем посмотреть следующую утилиту man debugfs. Данная утилита умеет очень многое: очень много ключей и различных опций. Чистит, удаляет, чинит, работает с inodes. Зайти в данную утилиту можно debugfs –w /dev/sdc1. Набираем help и видим кучу опций. Можно попросить данную утилиту вывести содержимое нашего тома. ls В результате данной команды мы увидим 2 объекта с номерами их inode. Теперь мы можем сказать rm test.txt и файл будет удален, точнее не сам файл а его индексный дескриптор., если посмотреть опять с помощью команды ls. То будет видно, что количество объектов не изменилось. Следовательно, мы этот файл в журналируемых файловых системах можем восстановить, восстановив его индексный дескриптор. Но только до тех пор, пока на место удаленного файла не был записан другой. Именно поэтому если требуется восстановление информации на диске, рекомендуется немедленно отключить ПК и после этого отдельно подключать носитель информации для процедуры восстановления. Так же на данном принципе основано сокрытие информации в Информационной безопасности, когда на носитель информации в 2 или 3 прохода записываются псевдослучайные данные. Для восстановления данных мы можем использовать команду lsdel. Данная команда показывает удаленные файлы. В принципе на данном debugfs и основаны многие программы для восстановления данных. На скриншоте хорошо видно, что был удален 1 inode с номером 12 дата и время, другие параметры. Для выхода используем q. Для восcтановления используем undel test.txt, команда, номер индексного дескриптора и имя файла с которым оно восстановится. Убедиться, что файл на месте можно с помощью команды ls. Утилита debagfs помогает восстанавливать файлы и вообще работать с файловой системой на низком уровне. Конечно восстанавливать по 1 файлу, это очень трудозатратно. Поэтому вот эти низкоуровневые утилиты используют более современные программы. Еще одна утилита dumpe2fs. Можно вызвать справку по данной утилите man dumpe2fs Данная команда делает дамп информации, которая хранится на данных томах. Выполним данную команду для /dev/sdc1 Мы получим следующий вывод информации. Данный вывод был сделан на стандартный вывод – т.е экран. Сделаем вывод в файл, например: dumpe2fs /dev/sdc1 > /tmp/output.txt Мы можем просмотреть информацию в выведенную в файл поэкранно с помощью less /tmp/output.txt В выводе мы сможем увидеть основные опции данной файловой системы. Переделаем файловую систему, текущую ext4 в ext2. Это можно сделать 3-мя способами с помощью утилит: mkfs, mke2fs, mkfs.ext2. Перед переформатирование необходимо отмонтировать файловую систему. После форматирования и перемонтируем. Опять снимаем дамп и передаем по конвееру на команду grep чтобы посмотреть features. Получаем следующее: dumpe2fs /dev/sdc1 | grep features И видим, что файловые системы отличаются, более новая файловая система имеет фишку журналирования has_jounal. Данная опция так же присутствует в ext3. Т.е в данных файловых системах имеются журналы с помощью которых удобно восстанавливать. Есть интересная утилита tune2fs – настраивать файловую систему. man tune2fs Данная утилита, как следует из описания настраивает настраиваемые параметры файловых систем. Например, у нас есть не журналируемая файловая система ext2. Мы даем команду tune2fs –O has_journal /dev/sdc1. Данная утилита добавляет опцию ведения журнала к файловой системе ext2. Или можем наоборот сказать удалить опцию поставив значок ^.
img
Ansible один из двух (наряду с SaltStack) наиболее популярных программных комплексов третьей волны, которые позволяют удалённо управлять конфигурациями. Тем не менее, в сегменте сетевого оборудования лидирует наш сегодняшний герой (если о ПО можно так сказать). В первую очередь это вызвано тем, что Ansible не поставит перед пользователем задачи устанавливать агент на хостинги, требующие от него управления. Тем паче ежели Ваш аппарат взаимодействует с ними через CLI, то Ansible это то, что доктор прописал. Одним выстрелом три "электронных зайца" Вообще, прежде чем знакомить уважаемых читателей со сценарием работы в данном программном комплексе, позвольте перечислить несколько его достоинств: Ansible позволяет параллельно подключать по SSH к устройствам (пользователь может сам определить их число). Ansible может передавать задачи на подключённые машины. Ansible способен разбивать машины, входящих в систему, на подгруппы и передавать специальных задачи для каждой подгруппы. Конечно, указаны не все достоинства Ansible. Просто в данных 3 пунктах, как мне кажется, отражена основная суть работы в данной среде. Выполняя эти три задачи, система автоматически освобождает Вас от головной боли по делегированию задач и функций в компании. Время деньги, как говорится. Сценарии Ну и переходим к основному блюду нашего материала - сценариям (playbook). Они состоят из двух частей набора команд для выполнения (play) и конкретных команд (task). Они выполняются друг за другом. Все записи данных осуществляются с помощью YAMLа. К несомненным плюсам его использования следует отнести то, что он гораздо лучше воспринимается людьми, нежели тот же самый JSON. Ежели Вы больше привыкли Вы к Python, то тут у Вас не возникнет проблем с адаптацией, так как синтаксис у них схожий. А вот так происходит процесс написания сценария (комментарии даны построчно к выводу): Имя сценария обязательный элемент для любого сценария; Сценарий применяется к машинам в подгруппе cisco-routers; Выключение режима сбора событий в конкретной машине (если не выключить данный режим, то система потратит много времени на решение ненужных задач); В разделе task указывается список команд для каждого конкретного случая; После чего происходит выполнение команды: PLAY [Run show commands on routers] *************************************************** TASK [run sh ip int br] *************************************************************** changed: [192.168.100.1] changed: [192.168.100.3] changed: [192.168.100.2] TASK [run sh ip route] **************************************************************** changed: [192.168.100.1] changed: [192.168.100.3] changed: [192.168.100.2] PLAY [Run show commands on switches] ************************************************** TASK [run sh int status] ************************************************************** changed: [192.168.100.100] TASK [run sh vlans] ******************************************************************* changed: [192.168.100.100] PLAY RECAP **************************************************************************** 192.168.100.1 : ok=2 changed=2 unreachable=0 failed=0 192.168.100.100 : ok=2 changed=2 unreachable=0 failed=0 192.168.100.2 : ok=2 changed=2 unreachable=0 failed=0 192.168.100.3 : ok=2 changed=2 unreachable=0 failed=0 И запускаем проверку выполнения команд: SSH password: PLAY [Run show commands on routers] *************************************************** TASK [run s hip int br] *************************************************************** Changed: [192.168.100.1] => {“changed”: true, “rc”: 0, “stderr”: “Shared connection To 192.168.100.1 closed. ”, “stdout”: “ Interface IP-Address OK? Method Status Protocol Ethernet0/0 192. 168.100.1 YES NVRAM up up Ethernet0/1 192.168.200.1 YES NVRAM up up Loopback0 10.1.1.1 YES manual up up ”, “stdout_lines “: [“”, “Interface IP-Address OK? Method Status Protocol”, “Ethernet0/0 192.168.100.1 YES NVRAM up up “, “Ethernet0/1 192.168.200.1 YES NVRAM up up “, “Loopaback0 10.1.1.1 YES manual up up “]} А что внутри? А теперь поговорим о начинке сценария. Основу составляют переменные. Это могут быть данные о машине, выводы команд, а также их можно вводить вручную. Главное не забывать правила написания имён. Их всего два: имена всегда должны состоять из букв, цифр и нижнего подчёркивания; имена всегда должны начинаться с буквы. Переменные могут быть определены разными способами: Инвентарным файлом [cisco-routers] 192.168.100.1 192.168.100.2 192.168.100.3 [cisco-switches] 192.168.100.100 [cisco-routers:vars] ntp_server=192.168.255.100 log_server=10.255.100.1 PLAYBOOKом -name: Run show commands on router: hosts: cisco-routers gather_facts: false vars: ntp_server: 192.168.255.100 log_server: 10.255.100.1 tasks: -name: run sh ip int br raw: s hip int br | ex unass -name: run s hip route raw: sh ip route Специальными файлами, созданными для групп: [cisco-routers] 192.168.100.1 192.168.100.2 192.168.100.3 [cisco-switches] 192.168.100.100 Или группами каталогов |– group_vars _ | |– all.yml | | |–cisco-routers.yml | Каталог с переменными для групп устройств | |–cisco-switches.yml _| | |–host vars _ | |–192.168.100.1 | | |–192.168.100.2 | | |–192.168.100.3 | Каталог с переменными для устройств | |–192.168.100.100 _| | |–myhosts | Инвертарный файл Команда register позволяет сохранять результаты выполнений модулей в переменные. После чего переменная может быть использована в шаблонах, принятиях решений о выполнении заданного сценария. --- - name: Run show commands on routers hosts: cisco-routers gather_facts: false tasks: -name: run s hip int br raw: s hip int br | ex unass register: sh_ip_int_br_result --- debug отображает информацию в стандартном потоке вывода в виде произвольной строки, переменной или фактах о машине. --- - name: Run show commands on routers hosts: cisco-routers gather_facts: false tasks: -name: run s hip int br raw: sh ip int br | ex unass register: sh_ip_int_br_result -name: Debug registered var debug: var=sh_ip_int_br_result.stdout_lines После чего результатом работы станет следующее: SSH password: PLAY [Run show commands on routers] *************************************************** TASK [run sh ip int br] *************************************************************** changed: [192.168.100.1] changed: [192.168.100.2] changed: [192.168.100.3] TASK [Debug registered var] *********************************************************** ok: [192.168.100.1] => { “sh_ip_int_br_result.stdout_lines”: [ “”, “Interface IP-Address OK? Method Status Protocol”, “Ethernet0/0 192.168.100.1 YES NVRAM up up “, “Ethernet0/1 192.168.200.1 YES NVRAM up up “, “Loopback0 10.1.1.1 YES manual up up “ ] } ok: [192.168.100.2] => { “sh_ip_int_br_result.stdout_lines”: [ “”, “Interface IP-Address OK? Method Status Protocol”, “Ethernet0/0 192.168.100.1 YES NVRAM up up “, “Ethernet0/2 192.168.200.1 YES NVRAM administratively down down “, “Loopback0 10.1.1.1 YES manual up up “ ] } ok: [192.168.100.3] => { “sh_ip_int_br_result.stdout_lines”: [ “”, “Interface IP-Address OK? Method Status Protocol”, “Ethernet0/0 192.168.100.3 YES NVRAM up up “, “Ethernet0/2 192.168.200.1 YES NVRAM administratively down down “, “Loopback0 10.1.1.1 YES manual up up “, “Loopback10 10.255.3.3 YES manual up up “ ] } PLAY RECAP **************************************************************************** 192.168.100.1 : ok=2 changed=1 unreachable=0 failed=0 192.168.100.2 : ok=2 changed=1 unreachable=0 failed=0 192.168.100.3 : ok=2 changed=1 unreachable=0 failed=0 Вместо заключения Можно ещё долго приводить примеры работы в системе, но ещё один факт так сказать "вишенка на торте". К плюсам Ansible следует отнести и то, что заданную команду система может выполнять практически до бесконечности. Пока не наступит требуемый результат трансформации не прекратятся. Пользователю можно не беспокоиться - программа сама всё сделает за Вас, а Вы можете заниматься другими делами.
img
Суть работы специалиста по информационной безопасности – предотвращение кибератак. Для этого повышается стоимость затрат на проведение атаки. Зачем это нужно? Это необходимо чтобы стоимость предполагаемой атаки была в разы меньше больше чем прибыть, по данной причине проводить ее злоумышленнику будет просто невыгодно. Для усложнения кибератак используются такой комплекс мер: обучение персонала правилам работы: не скачивать непонятные файлы с непонятных сайтов, не открывать странные ссылки на почте, не разглашать данные о системе работы, сохранять всю корпоративную информацию в тайне. Конечно же куда без антивируса! Многие ошибочно полагают что антивирус только нагружает компьютер и от него нет никакой пользы. Даже самый просто бесплатный антивирус сможет защитить вас от 99 процентов всех вредоносных программ. В прошлом компании не особо волновались за безопасность и выделяли на нее очень мало времени. Парой и вовсе доходило до того, что собственники фирм говорят о том, что они не нужны хакерам так как их незачем взламывать. В теперешнем времени все кардинально изменилось, особенно сразу после событий 2015 года. Теперь компании обязали использовать необходимые средства защиты от кибератак, кроме того их обязали находить и исправлять уязвимости в системе. Именно по этой причине данное направление стало активно развивается и у специалистов ИБ стало больше работы. Иногда случается так, что у сотрудников той или иной компании нахватает навыков, компетенции или же полномочий для устранения проблем и ошибок. Если такое происходит, привлекают сторонние организации, которые смогут предоставить необходимый уровень защиты сети. В самом простом случае специалисту по ИБ покупают программу, с помощью которой он сможет найти ошибки после чего устранить их. Но так работают только те «специалисты», которые не понимают, как проводится сканирование и слепо следуют предлагаемым инструкциям. В небольших компаниях за ИБ отвечают один или два человека, которые выделяют на свою основную работу по 3-4 часа в неделю. Также в больших корпорациях под данные задачи могут выделить целое подразделение специалистов, у которых гораздо больше возможностей, навыков и компетенции. Любой специалист по ИБ сам должен быть немного хакером, а именно понимать принцип работы этичного хакинга и выполнять их, для того чтобы понимать, как действует и рассуждает злоумышленник. В ином случае действия специалиста можно расценивать как противозаконные. Для избегания таких оплошностей необходимо четко обговорить с работодателем область допустимых действий, после чего подписать договор, в котором они будут указаны. Что же имеется ввиду, когда говорят неэтичный хакинг? Неэтичный хакинг включает в себя распространение информации добытой незаконным путем, уязвимостей, устройства системы и структуры ее защиты. То есть специалист по ИБ не должен обсуждать совою работу вовремя дружеских посиделок, ибо тем самым он нарушает закон. Очень часто такие вопросы задают на собеседованиях. Это делают, для того чтобы проверить человека на, то сольет ли он информацию своему следующему работодателю. Каждый специалист по ИБ должен понимать к чему могут привести его действия.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59