По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Каждому из нас в своей жизни приходится пользоваться услугами Call-центров. Простым примером может быть звонок вашему сотовому оператору, когда Вам необходимо получить консультацию по поводу интересующего Вас вопроса и чаще всего именно с помощью Call-центра Вы и получаете консультацию от сотового оператора по поводу решения вашего вопроса. Под Call-центром подразумевается вспомогательная служба или самостоятельная организация, которая специализируется на обработке обращений и информированию с помощью голосовых каналов связи по запросу клиента или же по инициативе организации. Разновидностью Call-центра считаются контакт-центры, которые помимо звонков способны обрабатывать обращения по электронной почте, традиционной почте, поступающие факсы и также проводя обработку обращений в формате чата с клиентом. Для того чтобы повысить эффективность работы компаний используют специальные средства для повышения эффективности их деятельности: пакеты оптимизации рабочей силы WFO и средства управления персоналом (WFM). Workforce optimization (WFO) Пакет оптимизации рабочей силы (WFO) представляет собой набор из функциональных модулей, которые работают вместе, чтобы помочь компаниям оптимизировать производительность своей рабочей силы. WFO рассматривается как "набор интегрированных модулей, предназначенных для сбора, анализа и предоставления менеджерам информации, необходимой для оценки эффективности их отдела и персонала, а также восприятия, потребностей и желаний их клиентов и потенциальных клиентов". Обычно современный контакт Центр состоит из следующих функциональных модулей, которые включают в себя: Аудиозапись разговора с клиентом для обеспечения качества обслуживания с использованием нормативной или речевой аналитики. Обеспечение качества посредствам предоставляемой услуги за счет наличия четких инструкций и внутренний политике сотрудников в процессе общения с клиентами. Постоянное обучение сотрудников для их освоения необходимого пакета вспомогательных инструментов для общения с клиентами, помогающие им повысить качество обслуживания. Электронное обучение, при котором сотрудник всегда может обратиться к инструкции в электронном виде, что предоставляет возможность постоянно корректировать необходимые инструкции для повышения эффективности работы и компетентности по необходимым вопросам сотрудников Call-центра. Использования геолокационных данных клиентов для создания, публикаций, отслеживания их местоположения и анализа отзывов клиентов в зависимости от их региона проживания. Управление эффективностью работы, необходимое для осуществления согласованной деятельности контакт-центра с задачами генеральной компании; предоставление определенной системы показателей и информационных панели для повышения производительности контакт-центра. Речевая аналитика, когда после звонка и в режиме реального времени происходит фиксация, структуризация и анализ телефонных звонков клиентов для определения основных проблем, с которыми они сталкиваются для упрощения их разрешения или полного устранения этих проблем. Полная аналитика процесса работы сотрудника, включающая в себя отслеживание и анализ всего, что происходит в рабочее время сотрудника. Использование специального программного обеспечения для текстового анализа неструктурированной информации полученной в рабочем процессе. Формирование полного отчета о полном цикле оказания услуги Call-центра, на основе которого проводится оптимизация деятельности с целью повышения качества предоставляемых услуг. Workforce Management (WFM) Средства управления персоналом WFM методология планирования рабочего времени и операционного управления сотрудниками в компании с целью снижения затрат на персонал и оптимизацию бизнес процессов внутри копании. Процесс работы WFM в компании дает Вам следующие возможности: Прогнозирование ожидаемой нагрузки на сотрудников анализируя данные предыдущих периодов работы компании; Автоматизация составления графиков работы сотрудников по сменам каждого работника, с учетом больничных, отпусков и праздничных дней; Предоставление актуальной информации о ключевых параметрах работы call-центра: количестве работающих операторов, очередях и степени загрузки, контроль объема обработанных вызовов; Мониторинг точности соблюдения расписания операторами в режиме реального времени; Автоматизация создания отчетов по производительности труда и возможность разработки на основе этой аналитики мотивационных схем для операторов; Оптимизация работы сотрудников, ответственных за построение и согласование расписаний; Повышение прозрачности распределения нагрузки и создание более комфортных условий работы благодаря учету пожеланий сотрудников. Актуальность использования инструментов WFO и WFM в наше время заключается в том, что только при наиболее высоком качестве обслуживания клиентов и профессионализме сотрудников, возможно добиться положительного отклика от ваших клиентов, тем самым повышая степень доверия к Вам и Вашему продукту или услуге в современных рыночных условиях.
img
Система записи телефонных разговоров, позволяет компаниям иметь возможность оценивать качество работы сотрудников, отслеживать различные показатели взаимодействия с клиентом, разрешать спорные ситуации. Запись телефонных разговоров - это мощный инструмент, который позволяет оптимизировать работу компании, улучшить качество обслуживания и компетенции сотрудников. На сегодняшний день, лидерами рынка систем записи являются ZOOM, Verint, Nice, Cisco (MediaSense). По какому принципу работает система записи? На этот вопрос мы постараемся ответить. Запись телефонных разговоров как правило делят на два типа: активная и пассивная. Активная (SPANLess) запись – это возможность телефонного аппарата напрямую отправлять RTP поток на сервер записи, а сигнальный трафик приходит через JTAPI*. *JTAPI (Java Telephony Application Programming Interface) – специальный телефонный «эй-пи-ай», позволяющий интегрировать телефонные события. Данный вариант зачастую реализуется при действующем кластере CUCM версией выше 6.0(Cisco Unified Communications Manager) и телефонах с поддержкой Built-in-Bridge. Давайте посмотрим на схему работы активной записи: Активный режим записи разговоров В данном примере, пользователь А, звонит пользователю В. На телефоне пользователя А включен режим Built-in Bridge, и настроен соответствующий профиль записи. CUCM в этот момент фиксирует, что телефон пользователя В подлежит записи и начинает дублировать сигнализацию на интерфейс сервера записи. Вместе с тем, на сервер приходит и RTP поток от пользователя В. Медиа поток декодируется и соотносится с сигнализацией. По окончании обработки, через GUI системы записи мы видим наш разговор, с временными метками, DNIS, ANI и некоторые другие. В контактных центрах, так же возможна интеграция с платформой UCCX, UCCE, Genesys ,Avaya Communication Manager. В результате интеграции с данной платформой, будет возможно передавать агентскую информацию, CallType и многие другие параметры. Давайте теперь разберемся с пассивной записью. Пассивная запись организуется путем настройки SPAN** – сессий для RTP траффика и сигнализации. **SPAN (Switched Port Analyzer) – мониторинговая сессия, которая позволяет дублировать сетевой трафик с одного интерфейса на другой. Чтобы на сервер записи не приходил ненужный трафик, как правило, настраивают RSPAN в сочетании листами доступа (access-list). Давайте снова посмотрим на схему: Пассивный (устаревший) режим записи разговоров На схеме сверху, можно заметить, что роль CUCM сводится к управлению сигнализацией (SCCP или SIP). Предположим, что на центральном коммутаторе есть следующие настройки: SPAN_SW(config)#monitor session 1 source interface f0/1 SPAN_SW(config)#monitor session 1 destination interface f0/3 Все, теперь траффик в обе стороны, как на прием, так и на передаче, с порта Fa 0/1 будет дублироваться на порт Fa 0/3. Можно вводить ограничения по SPAN-сессиям, например: SPAN_SW(config)#monitor session 1 source interface f0/1 tx SPAN_SW(config)#monitor session 1 destination interface f0/3 Это ограничение будет дублировать только исходящий (с порта) траффик. Таким образом, мы рассмотрели архитектурные особенности систем записи. Наша компания имеет большой опыт в инсталляции и поддержке систем записи.
img
Перед тем как начать: это цикл статей. Мы рекомендуем до этого материала ознакомиться со статьей про Interlayer Discovery. Хотя IPv6 является основной темой этих лекций, в некоторых случаях IPv4 представляет собой полезный пример решения; Address Resolution Protocol IPv4 (ARP) является одним из таких случаев. ARP - это очень простой протокол, используемый для решения проблемы межуровневого обнаружения, не полагаясь на сервер любого типа. Рисунок ниже будет использован для объяснения работы ARP. Предположим, A хочет отправить пакет C. Зная IPv4-адрес C, 203.0.113.12 недостаточно, чтобы A правильно сформировал пакет и поместил его на канал связи по направлению к C. Чтобы правильно построить пакет, A также должен знать: Находится ли C на том же канале связи, что и A MAC или физический адрес C Без этих двух частей информации A не знает, как инкапсулировать пакет в канал связи, поэтому C фактически получит пакет, а B проигнорирует его. Как можно найти эту информацию? На первый вопрос, находится ли C на том же канале вязи, что и A, можно ответить, рассмотрев IP-адрес локального интерфейса, IP-адрес назначения и маску подсети. ARP решает вторую проблему, сопоставляя IP-адрес назначения с MAC-адресом назначения, с помощью следующего процесса: Хост A отправляет широковещательный пакет каждому устройству в сети, содержащему адрес IPv4, но не MAC-адрес. Это запрос ARP; это запрос A на MAC-адрес, соответствующий 203.0.113.12. B и D получают этот пакет, но не отвечают, поскольку ни один из их локальных интерфейсов не имеет адреса 203.0.113.12. Хост C получает этот пакет и отвечает на запрос, снова используя unicast пакет. Этот ответ ARP содержит как IPv4-адрес, так и соответствующий MAC-адрес, предоставляя A информацию, необходимую для создания пакетов в направлении C. Когда A получает этот ответ, он вставляет сопоставление между 203.0.113.12 и MAC-адресом, содержащимся в ответе, в локальном кэше ARP. Эта информация будет храниться до истечения времени ожидания; правила тайм-аута записи кэша ARP различаются в зависимости от реализации и часто могут быть настроены вручную. Продолжительность кэширования записи ARP - это баланс между слишком частым повторением одной и той же информации в сети в случае, когда сопоставление IPv4-адресов с MAC-адресами не меняется очень часто, и отслеживанием любых изменений в расположении устройство в случае, когда конкретный адрес IPv4 может перемещаться между хостами. Когда A получает этот ответ, он вставляет сопоставление между 203.0.113.12 и MAC-адресом, содержащимся в ответе, в локальный кэш ARP. Эта информация будет храниться до тех пор, пока не истечет время ожидания; правила для тайм-аута записи кэша ARP варьируются в зависимости от реализации и часто могут быть настроены вручную. Продолжительность кэширования записи ARP - это баланс между тем, чтобы не повторять одну и ту же информацию слишком часто в сети, в случае, когда сопоставление IPv4-MAC-адресов меняется не очень часто, и идти в ногу с любыми изменениями в местоположении устройства, в случае, когда конкретный IPv4-адрес может перемещаться между хостами. Любое устройство, получающее ответ ARP, может принять пакет и кэшировать содержащуюся в нем информацию. Например, B, получив ответ ARP от C, может вставить сопоставление между 203.0.113.12 и MAC-адресом C в свой кэш ARP. Фактически, это свойство ARP часто используется для ускорения обнаружения устройств, когда они подключены к сети. В спецификации ARP нет ничего, что требовало бы от хоста ожидания запроса ARP для отправки ответа ARP. Когда устройство подключается к сети, оно может просто отправить ответ ARP с правильной информацией о сопоставлении, чтобы ускорить процесс начального подключения к другим узлам на том же проводе; это называется gratuitous ARP. Gratuitous ARP также полезны для Duplicate. Gratuitous ARP также полезны для обнаружения дублирующихся адресов (Duplicate Address Detection - DAD); если хост получает ответ ARP с адресом IPv4, который он использует, он сообщит о дублированном адресе IPv4. Некоторые реализации также будут посылать серию gratuitous ARPs в этом случае, чтобы предотвратить использование адреса или заставить другой хост также сообщить о дублирующемся адресе. Что произойдет, если хост A запросит адрес, используя ARP, который не находится в том же сегменте, например, 198.51.100.101 на рисунке 5? В этой ситуации есть две разные возможности: Если D настроен для ответа как прокси-ARP, он может ответить на запрос ARP с MAC-адресом, подключенным к сегменту. Затем A кэширует этот ответ, отправляя любой трафик, предназначенный для E, на MAC-адрес D, который затем может перенаправить этот трафик на E. Наиболее широко распространенные реализации по умолчанию не включают прокси-ARP. A может отправлять трафик на свой шлюз по умолчанию, который представляет собой локально подключенный маршрутизатор, который должен знать путь к любому пункту назначения в сети. IPv4 ARP - это пример протокола, который отображает interlayer идентификаторы путем включения обоих идентификаторов в один протокол. Обнаружение соседей IPv6 IPv6 заменяет более простой протокол ARP серией сообщений Internet Control Message Protocol (ICMP) v6. Определены пять типов сообщений ICMPv6: Тип 133, запрос маршрутизатора Тип 134, объявление маршрутизатора Тип 135, запрос соседа Тип 136, объявление соседа Тип 137, перенаправление Рисунок ниже используется для объяснения работы IPv6 ND. Чтобы понять работу IPv6 ND, лучше всего проследить за одним хостом, поскольку он подключен к новой сети. Хост A на рисунке ниже используется в качестве примера. A начнет с формирования link local address, как описано ранее. Предположим, A выбирает fe80 :: AAAA в качестве link local address. Теперь A использует этот link local address в качестве адреса источника и отправляет запрос маршрутизатору на link local multicast address (адрес многоадресной рассылки для всех узлов). Это сообщение ICMPv6 типа 133. B и D получают этот запрос маршрутизатора и отвечают объявлением маршрутизатора, которое является сообщением ICMPv6 типа 134. Этот одноадресный пакет передается на локальный адрес канала A, используемый в качестве адреса источника, fe80 :: AAAA. Объявление маршрутизатора содержит информацию о том, как вновь подключенный хост должен определять информацию о своей локальной конфигурации в виде нескольких флагов. Флаг M указывает, что хост должен запросить адрес через DHCPv6, потому что это управляемый канал. Флаг O указывает, что хост может получать информацию, отличную от адреса, который он должен использовать через DHCPv6. Например, DNS-сервер, который хост должен использовать для разрешения имен DNS, должен быть получен с помощью DHCPv6. Если установлен флаг O, а не флаг M, A должен определить свой собственный IPv6-адрес интерфейса. Для этого он определяет набор префиксов IPv6, используемых в этом сегменте, исследуя поле информации о префиксе в объявлении маршрутизатора. Он выбирает один из этих префиксов и формирует IPv6-адрес, используя тот же процесс, который он использовал для формирования link local address: он добавляет локальный MAC-адрес (EUI-48 или EUI-64) к указанному префиксу. Этот процесс называется SLAAC. Теперь хост должен убедиться, что он не выбрал адрес, который использует другой хост в той же сети; он должен выполнять DAD. Чтобы выполнить обнаружение повторяющегося адреса: Хост отправляет серию сообщений запроса соседей, используя только что сформированный IPv6-адрес и запрашивая соответствующий MAC-адрес (физический). Это сообщения ICMPv6 типа 135, передаваемые с link local address, уже назначенного интерфейсу. Если хост получает объявление соседа или запрос соседа с использованием того же адреса IPv6, он предполагает, что локально сформированный адрес является дубликатом; в этом случае он сформирует новый адрес, используя другой локальный MAC-адрес, и попытается снова. Если хост не получает ни ответа, ни запроса соседа другого хоста, использующего тот же адрес, он предполагает, что адрес уникален, и назначает вновь сформированный адрес интерфейсу. Устранение ложных срабатываний при обнаружении повторяющегося адреса Процесс DAD, описанный здесь, может привести к ложным срабатываниям. В частности, если какое-то другое устройство на канале связи передает исходные пакеты запроса соседа обратно к A, оно будет считать, что это от другого хоста, требующего тот же адрес, и, следовательно, объявит дубликат и попытается сформировать новый адрес. Если устройство постоянно повторяет все запросы соседей, отправленные A, A никогда не сможет сформировать адрес с помощью SLAAC. Чтобы решить эту проблему, RFC7527 описывает усовершенствованный процесс DAD. В этом процессе A будет вычислять одноразовый номер, или, скорее, случайно выбранную серию чисел, и включать ее в запрос соседей, используемый для проверки дублирования адреса. Этот одноразовый номер включен через расширения Secure Neighbor Discovery (SEND) для IPv6, описанные в RFC3971. Если A получает запрос соседа с тем же значением nonce, который он использовал для отправки запроса соседа вовремя DAD, он сформирует новый одноразовый номер и попытается снова. Если это произойдет во второй раз, хост будет считать, что пакеты зацикливаются, и проигнорирует любые дальнейшие запросы соседей с собственным одноразовым номером в них. Если полученные запросы соседей имеют одноразовый номер, отличный от того, который выбрал локальный хост, хост будет предполагать, что на самом деле существует другой хост, который выбрал тот же адрес IPv6, и затем сформирует новый адрес IPv6. Как только у него есть адрес для передачи данных, A теперь требуется еще одна часть информации перед отправкой информации другому хосту в том же сегменте - MAC-адрес принимающего хоста. Если A, например, хочет отправить пакет в C, он начнет с отправки multicast сообщения запроса соседа на C с запросом его MAC-адреса; это сообщение ICMPv6 типа 135. Когда C получает это сообщение, он ответит с правильным MAC-адресом для отправки трафика для запрошенного IPv6-адреса; это сообщение ICMPv6 типа 136. В то время как предыдущий процесс описывает объявления маршрутизатора, отправляемые в ответ на запрос маршрутизатора, каждый маршрутизатор будет периодически отправлять объявления маршрутизатора на каждом подключенном интерфейсе. Объявление маршрутизатора содержит поле lifetime, указывающее, как долго действует объявление маршрутизатора. А теперь почитайте о проблемах шлюза по умолчанию. У нас получился отличным материал на эту тему.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59