По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Итак, у нас загрузилось ядро операционной системы. Далее отрабатывают системы инициализации операционной системы. Три варианта: SysV, systemd, Upstart. Init в стиле SysV Init в стиле SysV данная процедура инициализации, самая старая она более классический Unix вариант инициализации операционной системы. Для того, чтобы понять, как происходит инициализация необходимо понять, что такое режимы загрузки (они же runlevel), разобраться как между ними переключатся, рассмотреть работу со службами. Обычно есть 7 уровней выполнения по умолчанию: Выключение Однопользовательский режим (чаще всего используется для отладки и настройки операционной системы) DebianUbuntu по умолчанию RedHatSuse по умолчанию текстовый режим. WildCard (программируемый режим, можно сюда поставить любой) RedHatSuse GUI (Graphical User Interface) Перезагрузка. Но существуют операционные системы, где 10 уровней по умолчанию. Конечно речь идет о самых распространенных ядрах и сборках *nix образных операционных системах. Для дальнейших пояснений, как работает инициализация в стиле sysV нам необходим операционная система CentOS 5.4 или ниже, потому что в более новых операционных системах данный процесс давно уже заменен. Отроем файл настроек текстовым редактором vi или любым другим удобным для вас. Мы можем увидеть содержание файла. Те самые уровни о которых шла речь выше. Плюс прописан уровень используемые при загрузке по умолчанию. Строчка id:3:initdefault: Мы данный параметр можем отредактировать и например сказать, чтобы операционная система загружалась по умолчанию в Single Mode например. Если мы посмотрим далее файл, мы можем увидеть настройку, которая описывает действия нажатия клавиш Ctrl+alt-delete. А также наглядно прописано, что запуск определенного уровня - это запуск определённого скрипта. Все скрипты запускаются из папки /etc/rc.d/ Все дальнейшие варианты инициализации растут, вот из этого варианта. И этой процедуры инициализации. Перейдем в директорию, где лежат все скрипты инициализации и выполняются данные скрипты при старте системы. В данной папке куча скриптов, которые запускают определенные службы, например, ssh запускает демона ssh для подключения клиентом по 22 порту. Т.е здесь куча служб и запускаются они этими скриптами. Если мы например хотим остановить какую нибудь службу то набираем ./rsync stop , ну и соответственно ./rsync start для запуска данной службы. Аналогично мы можем управлять через команду service, например: service rsync restart . Поднимемся на уровень выше cd .. Найдем все файлы, которые начинаются с rc. Для этого набираем: ls -l | grep rc. В результате мы увидим несколько скриптов. Посмотрим rc3.d . А для этого перейдем в эту директорию. В ней можно увидеть кучу скриптов. В вариации Ubuntu современной и затем в вариации CentOS 5.4 Те скрипты, которые начинаются с буквы K, эти скрипты при старте убивают сервис, те скрипты, которые имеют первой букву S запускают сервис. Ну и соответственно порядковый номер исполнения скрипта в очереди. Для каждого runlevel свой набор скриптов. Основные команды Init управление инициализацией с помощью нее можно перемещаться между runlevel. Telinit управление процессом init , в старых дистрибутива использовалась именно эта команда. Wall вывод сообщения пользователям системы Halt - выключение компьютера Reboot перезагрузка компьютера Shutdown - запланированное выключение Service service_name start|stop|reload|restart Для того, чтобы перемещаться по уровням загрузки, нам необходимо понять на каком уровне мы находимся сейчас. Набираем runlevel . Соответственно, если мы хотим переключится telinit 1 отрабатывают скипты мы попадаем в однопользовательский режим 1. Для того, чтобы послать сообщение все пользователям на данной машине необходимо набрать с соблюдением регистра wall "Abrakadabra". У всех пользователей появится данное сообщение на экране. Для выключения сейчас компьютера можно использовать shutdown h now. Init в стиле Systemd Init в стиле Systemd более современная система инициализации операционной системы Linux. Необходимым элементом работы системы systemd , являются Unit. Unit- это модуль которыми оперирует systemd: .service службы .mount точки монтирования .device устройства .socket сокеты Если при работе в консоли мы не указывает расширение юнита, то в принципе system может догадаться в каком случае, что используется. В операционной системе существуют 2 папки в которых хранятся Unit: /usr/lib/systemd директория с Units по умолчанию, в которой создаются units при установке какого либо программного обеспечения. /etc/systemd директория с управляемыми Units. Тут лежат те Unit которыми может управлять админ, добавлять , редактировать. Посмотрим, что находится в данных директориях переходим в /usr/lib/system Нам интересны 2 директории system и user. Содержимое папки system выглядит вот так. В данной директории лежат все необходимые Units для системы в директории user для пользователя. Картинка будет примерно аналогичная. Директория /etc/systemd. Тут точно также есть две папки system и user, а также конфигурационные фалы. Данные конфигурационные файлы и отвечают за настройку systemd. Это те файлы которые пришли на замену /etc/inittab, предыдущей версии инициализации операционной системы. Файлы юнитов в директориях system и user мы можем редактировать для каких-то своих целей и даже писать targets. Далее мы можем посмотреть запущенные Units. Для этого мы можем выполнить systemctl команду, она отвечает за все действия с systemd. Для примера команда systemctl list-units нам выведет все запущенные Units, сокеты ,устройства ,точки монтирования. Можно посмотреть юниты, которые не стартанули systemd failed. А также мы можем управлять юнитами systemctl status|start|stop|restart crond. Так же Systemd работает с Target (целями). Есть target которые работают так же как runlevel в классической процедуре инициализации, они не пронумерованы в отличии от runlevel у них есть конкретные имена. В табличке можно посмотреть какие target соотносятся с какими runlevel. Их этих target может быть несколько, потому что target бывают не только загрузочные. Данная система использования target обратно совместимая с системой инициализации. Для переключения мы можем использовать команду telinit. Сами по себе target есть некая группировка юнитов, последовательность вызова юнитов. Это может быть target последовательного вызова нескольких служб и ниже стоящий target. Текущий уровень мы можем посмотреть командой runlevel. По умолчанию это будет 3. Далее мы можем написать systemctl list-units --type=target И можно увидеть, что находимся на 3-м уровне также т.к target соответствует. Так же мы можем переключатся между runlevel командой telinit. Например, для перехода в однопользовательский режим telinit 1. А так же мы можем использовать через синтаксис systemctl isolate reboot.target. Для того чтобы поставить какой-то загрузочный target по умолчанию, необходимо отредактировать загрузчик, вставить параметры ядра, которые будут запускаться. Или сделать проще командой systemctl set-default f multi-user.target (использование например 3 runlevel по умолчанию). Одной из особенностей system является интересная система журналирования journald. Демон журналов. Эта система уникальна тем, что собирает информацию из разных источников событий и привязывает их к конкретным юнитам и сервисам. Благодаря этому мы можем всю диагностическую информацию просматривать в одном месте. Соответственно находить неисправности и их устранять. Работает следующим образом: Journalctl f - показывает события по мере их возникновения. Journalctl n 10 вывод последних 10 событий Инициализация Init в стиле Инициализация Init в стиле upstart это система инициализации, в том стиле которая задумывалась для Ubuntu, и заменила процедуру инициализации, которая пришла из Unix стандартную init процедуру. Процедура инициализации upstart контролирует инициализацию демонов и служб в течении загрузки системы и их остановку если у нас система выключается или нужно переключится в другой режим. Основное отличие от классической процедуры инициализации в том, что задачи и службы останавливаются по событиям и сами события могут генерироваться задачами и службами, могут приняты быть от любого процесса системы. Могут быть службы перезапущены в автоматическом режиме если они вдруг были завершены в аварийном режиме. Еще одно отличие в том, что у данного режима инициализации есть задачи (tasks). Основными понятиями являются службы и задачи. Основное отличие службы от задачи в том, что служба перезапускается если была аварийно завершена, а задача нет. Процесс инициализации системы по upstart берет конфигурацию из файлов каталога /etc/init каталог файлов-заданий (jobs). Каждый файл отвечает за запуск каждого задания или службы и должен заканчиваться с расширением .conf . Уровни инициализации остались те же самые. Определение и переключение между уровнями выполняются теми же командами, описанными выше. Изменился файл, в котором мы описываем runlevel запуска по умолчанию. И для управления upstart используется утилита initctl. Как мы видим в каталоге /etc/init находятся конфигурационные файлы Jobs. Каждый отвечает за запуск отдельной службы. Смотрим файл конфигурации простейшего файрвола операционной системы cat ufw.conf Как мы видим ufw стартует при условии, описанном start on, выключается на определенных runlevel. Файл конфигурации с runlevel по умолчанию находится в файле cat /etc/init/rc-sysinit.conf Управляются службы простыми командами status ufw start ufw stop ufw. В данной статье мы рассмотрели различные вариации инициализации. Думаю, информация будет очень полезной.
img
Выходим на новый уровень. Для изучения следующей темы вы уже должны хорошо понимать связующее дерево. Связующее дерево (Spanning Tree Protocol STP) — это важная тема. Есть много вещей, которые могут пойти не так, и в этой статье мы рассмотрим ряд инструментов, которые мы можем использовать для защиты нашей топологии связующего дерева. Для профессионалов PortFast: мы видели это в статье о spanning tree и rapid spanning tree. Он настроит порт доступа как пограничный порт, поэтому он переходит в режим forwarding немедленно. BPDU Guard: это отключит (err-disable) интерфейс, который имеет настроенный PortFast, если он получает BPDU. BPDUFilter: это будет подавлять BPDU на интерфейсах. Root Guard: это предотвратит превращение соседнего коммутатора в корневой мост, даже если он имеет лучший идентификатор моста. UplinkFast: мы видели это в статье о связующем дереве. Он улучшает время конвергенции. BackboneFast: мы также видели это в статье о связующем дереве. Оно улучшает время конвергенции, если у вас есть сбой косвенной связи. UplinkFast и BackboneFast не требуются для rapid spanning tree, поскольку оно уже реализовано по умолчанию. Мы начнем с BPDUguard: В топологии выше мы имеем идеально работающую топологию остовного дерева. По умолчанию связующее дерево будет отправлять и получать BPDU на всех интерфейсах. В нашем примере у нас есть компьютер, подключенный на интерфейсе fa0/2 коммутатора B. Есть кто-то, кто с враждебными намерениями мог бы запустить инструмент, который сгенерирует BPDU с превосходящим ID моста. Что же произойдет- так это то, что наши коммутаторы будут считать, что корневой мост теперь может быть достигнут через коммутатор B, и у нас будет повторный расчет связующего дерева. Звучит не очень хорошо, правда? Можно поставить человека (хакера) в середине топологии для атаки так, чтобы никто не знал. Представьте себе, что хакер подключает свой компьютер к двум коммутаторам. Если хакер станет корневым мостом, то весь трафик от коммутатора А или коммутатора C к коммутатору В будет проходить через него. Он запустит Wireshark и подождет, пока произойдет чудо. BPDUguard гарантирует, что, когда мы получаем BPDU на интерфейс, интерфейс перейдет в режим err-disable. Чтобы продемонстрировать работу BPDUguard будем использовать два коммутатора. Настроем интерфейс fa0/16 коммутатора B так, что он перейдет в режим err-disable, если он получит BPDU от коммутатора C. SwitchB(config)#interface fa0/16 SwitchB(config-if)#spanning-tree bpduguard enable Вот как вы включаете его в интерфейсе. Имейте в виду, что обычно вы никогда не будете делать это между коммутаторами. Вы должны настроить это на интерфейсах в режиме доступа, которые подключаются к компьютерам. А-а... вот и наш интерфейс. SwitchB(config-if)#no spanning-tree bpduguard SwitchB(config-if)#shutdown SwitchB(config-if)#no shutdown Избавиться от BPDUguard можно используя команды shut/no shut, чтобы сделать интерфейс снова рабочим. SwitchB(config)#spanning-tree portfast bpduguard Вы также можете использовать команду spanning-tree portfast bpduguard. Это позволит глобально активировать BPDUguard на всех интерфейсах, которые имеют включенный portfast. SwitchB(config)#spanning-tree portfast default Portfast также может быть включен глобально для всех интерфейсов, работающих в режиме доступа. Это полезная команда, позволяющая проверить свою конфигурацию. Вы видите, что portfast и BPDUGuard были включены глобально. BPDUGuard переведет интерфейс в режим err-disable. Кроме того, можно фильтровать сообщения BPDU с помощью BPDUfilter. BPDUfilter может быть настроен глобально или на уровне интерфейса и есть разница: Глобальный: если вы включите bpdufilter глобально, любой интерфейс с включенным portfast станет стандартным портом. Интерфейс: если вы включите BPDUfilter на интерфейсе, он будет игнорировать входящие BPDU и не будет отправлять никаких BPDU. Вы должны быть осторожны, когда включаете BPDUfilter на интерфейсах. Вы можете использовать его на интерфейсах в режиме доступа, которые подключаются к компьютерам, но убедитесь, что вы никогда не настраиваете его на интерфейсах, подключенных к другим коммутаторам. Если вы это сделаете, вы можете получить цикл. Для демонстрации работы BPDUfilter мы будем снова использовать коммутатор B и коммутатор C. SwitchB(config)#interface fa0/16 SwitchB(config-if)#spanning-tree portfast trunk SwitchB(config-if)#spanning-tree bpdufilter enable Он перестанет посылать BPDU и будет игнорировать все, что будет получено. SwitchB#debug spanning-tree bpdu Вы не увидите никаких интересных сообщений, но если вы включите отладку BPDU, то заметите, что он больше не отправляет никаких BPDU. Если вы хотите, вы также можете включить отладку BPDU на коммутаторе C, и вы увидите, что нет ничего от коммутатора B. SwitchB(config)#interface fa0/16 SwitchB(config-if)#no spanning-tree bpdufilter enable Давайте избавимся от команды BPDUfilter на уровне интерфейса. SwitchB(config)#spanning-tree portfast bpdufilter default Вы также можете использовать глобальную команду для BPDUfilter. Это позволит включить BPDUfilter на всех интерфейсах, которые имеют portfast. Еще один вариант, с помощью которого мы можем защитить наше связующее дерево, - это использовать RootGuard. Проще говоря, RootGuard позаботится о том, чтобы вы не принимали определенный коммутатор в качестве корневого моста. BPDU отправляются и обрабатываются нормально, но, если коммутатор внезапно отправляет BPDU с идентификатором верхнего моста, вы не будете принимать его в качестве корневого моста. Обычно коммутатор D становится корневым мостом, потому что у него есть лучший идентификатор моста, к счастью, у нас есть RootGuard на коммутатое C, так что этого не произойдет! Рассмотрим с вами конфигурацию с коммутатором B и коммутатором C. SwitchB(config)#spanning-tree vlan 1 priority 4096 Давайте убедимся, что коммутатор C не является корневым мостом. Вот как мы включаем RootGuard на интерфейсе. SwitchB#debug spanning-tree events Spanning Tree event debugging is on Не забудьте включить отладку, если вы хотите увидеть события. SwitchC(config)#spanning-tree vlan 1 priority 0 Давайте перенастроим коммутатор B, изменив приоритет на наименьшее возможное значение 0 на коммутаторе C. Он теперь должен стать корневым мостом. Вот так коммутатор B не будет принимать коммутатор C в качестве корневого моста. Это заблокирует интерфейс для этой VLAN. Вот еще одна полезная команда, чтобы проверить, работает ли RootGuard. Связующее дерево становится все более безопасным с каждой минутой! Однако есть еще одна вещь, о которой мы должны подумать… Если вы когда-либо использовали волоконные кабели, вы могли бы заметить, что существует другой разъем для передачи и приема трафика. Если один из кабелей (передающий или принимающий) выйдет из строя, мы получим однонаправленный сбой связи, и это может привести к петлям связующего дерева. Существует два протокола, которые могут решить эту проблему: LoopGuard UDLD Давайте начнем с того, что внимательно рассмотрим, что произойдет, если у нас произойдет сбой однонаправленной связи. Представьте себе, что между коммутаторами волоконно-оптические соединения. На самом деле имеется другой разъем для передачи и приема. Коммутатор C получает BPDU от коммутатора B, и в результате интерфейс стал альтернативным портом и находится в режиме блокировки. Теперь что-то идет не так... transmit коннектор на коммутаторе B к коммутатору C был съеден мышами. В результате коммутатор C не получает никаких BPDU от коммутатора B, но он все еще может отправлять трафик для переключения между ними. Поскольку коммутатор C больше не получает BPDU на свой альтернативный порт, он перейдет в forwarding режим. Теперь у нас есть one way loop (петля в один конец), как указано зеленой стрелкой. Один из методов, который мы можем использовать для решения нашего однонаправленного сбоя связи — это настройка LoopGuard. Когда коммутатор отправляет, но не получает BPDU на интерфейсе, LoopGuard поместит интерфейс в состояние несогласованности цикла и заблокирует весь трафик! Мы снова будем использовать эту топологию для демонстрации LoopGuard. SwitchA(config)#spanning-tree loopguard default SwitchB(config)#spanning-tree loopguard default SwitchC(config)#spanning-tree loopguard default Используйте команду spanning-tree loopguard по умолчанию, чтобы включить LoopGuard глобально SwitchB(config)#interface fa0/16 SwitchB(config-if)#spanning-tree portfast trunk SwitchB(config-if)#spanning-tree bpdufilter enable В примере у нас нет никаких волоконных разъемов, поэтому мы не сможем создать однонаправленный сбой связи. Однако мы можем смоделировать его с помощью BPDUfilter на интерфейсе SwitchB fa0/16. Коммутатор C больше не будет получать никаких BPDU на свой альтернативный порт, что заставит его перейти в режим переадресации. Обычно это вызвало бы петлю, но, к счастью, у нас есть настроенный LoopGuard. Вы можете увидеть это сообщение об ошибке, появляющееся в вашей консоли. Проблема решена! SwitchC(config-if)#spanning-tree guard loop Если вы не хотите настраивать LoopGuard глобально, вы т можете сделать это на уровне интерфейса. Другой протокол, который мы можем использовать для борьбы с однонаправленными сбоями связи, называется UDLD (UniDirectional Link Detection). Этот протокол не является частью инструментария связующего дерева, но он помогает нам предотвратить циклы. Проще говоря, UDLD — это протокол второго уровня, который работает как механизм keepalive. Вы посылаете приветственные сообщения, вы их получаете, и все прекрасно. Как только вы все еще посылаете приветственные сообщения, но больше их не получаете, вы понимаете, что что-то не так, и мы блокируем интерфейс. Убедитесь, что вы отключили LoopGuard перед работой с UDLD. Мы будем использовать ту же топологию для демонстрации UDLD. Существует несколько способов настройки UDLD. Вы можете сделать это глобально с помощью команды udld, но это активирует только UDLD для оптоволоконных линий связи! Существует два варианта для UDLD: Normal (default) Aggressive Когда вы устанавливаете UDLD в нормальное состояние, он помечает порт как неопределенный, но не закрывает интерфейс, когда что-то не так. Это используется только для того, чтобы «информировать» вас, но это не предотвратит циклы. Агрессивный - это лучшее решение, когда пропадает связь с соседом. Он будет посылать кадр UDLD 8 раз в секунду. Если сосед не отвечает, интерфейс будет переведен в режим errdisable. SwitchB(config)#interface fa0/16 SwitchB(config-if)#udld port aggressive SwitchC(config)#interface fa0/16 SwitchC(config-if)#udld port aggressive Мы будем использовать коммутатор B и C, чтобы продемонстрировать UDLD. Будем использовать агрессивный режим, чтобы мы могли видеть, что интерфейс отключается, когда что-то не так. Если вы хотите увидеть, что UDLD работает, вы можете попробовать выполнить отладку. Теперь самое сложное будет имитировать однонаправленный сбой связи. LoopGuard был проще, потому что он был основан на BPDUs. UDLD запускает свой собственный протокол уровня 2, используя собственный MAC-адрес 0100.0ccc.сссс. SwitchC(config)#mac access-list extended UDLD-FILTER SwitchC(config-ext-macl)#deny any host 0100.0ccc.cccc SwitchC(config-ext-macl)#permit any any SwitchC(config-ext-macl)#exit SwitchC(config)#interface fa0/16 SwitchC(config-if)#mac access-group UDLD-FILTER in Это творческий способ создавать проблемы. При фильтрации MAC-адреса UDLD он будет думать, что существует сбой однонаправленной связи! Вы увидите много отладочной информации, но конечным результатом будет то, что порт теперь находится в состоянии err-disable. Вы можете проверить это с помощью команды show udld. LoopGuard и UDLD решают одну и ту же проблему: однонаправленные сбои связи. Они частично пересекаются, но есть ряд различий, вот общий обзор: LoopGuardUDLDНастройкиГлобально/на портуГлобально (для оптики)/на портуVLAN?ДаНет, на портуАвтосохранениеДаДа, но вам нужно настроить errdisable timeout.Защита от сбоев STP из-за однонаправленных связейДа - нужно включить его на всех корневых и альтернативных портахДа - нужно включить его на всех интерфейсах.Защита от сбоев STP из-за сбоев программного обеспечения (нет отправки BPDU)ДаНетЗащита от неправильного подключения (коммутационный оптический приемопередающий разъем)НетДа Есть еще одна последняя тема, которую хотелось бы объяснить, это не протокол связующего дерева, но речь идет о избыточных ссылках, поэтому я оставлю ее здесь. Это называется FlexLinks. Вот в чем дело: при настройке FlexLinks у вас будет активный и резервный интерфейс. Мы настроим это на коммутаторе C: Fa0/14 будет активным интерфейсом. Fa0/16 будет интерфейс резервного копирования (этот блокируется!). При настройке интерфейсов в качестве FlexLinks они не будут отправлять BPDU. Нет никакого способа обнаружить петли, потому что мы не запускаем на них связующее дерево. Всякий раз, когда наш активный интерфейс выходит из строя, резервный интерфейс заменяет его. SwitchC(config)#interface fa0/14 SwitchC(config-if)#switchport backup interface fa0/16 Именно так мы делаем интерфейс fa0/16 резервной копией интерфейса fa0/14. Вы можете видеть, что связующее дерево отключается для этих интерфейсов. Проверьте нашу конфигурацию с помощью команды show interfaces switchport backup. Вот и все, что нужно было сделать. Это интересное решение, потому что нам больше не нужно связующее дерево. Ведь в любой момент времени активен только один интерфейс. SwitchC(config)#interface f0/14 SwitchC(config-if)#shutdown Давайте закроем активный интерфейс. Вы можете видеть, что fa0/16 стал активным. Вот и все.
img
Apache Maven - это инструмент управления проектами и автоматизации сборки с открытым исходным кодом, основанный на концепции объектной модели проекта (POM – Project Object Model), которая в основном используется для развертывания приложений на основе Java, но также может использоваться в проектах, написанных на C#, Ruby и другиех языках программирования. В этой статье мы объясним, как установить и настроить последнюю версию Apache Maven в системе CentOS 7 (данная инструкция также работает с дистрибутивом RHEL и Fedora). Требования: Недавно развернутый или существующий экземпляр сервера CentOS 7. Java Development Kit (JDK) - Maven 3.3+ требует JDK 1.7 или выше для выполнения. Установка OpenJDK 8 в CentOS 7 Java Development Kit (JDK) является основным требованием для установки Apache Maven, поэтому сначала установите Java в системе CentOS 7 из репозитория по умолчанию и проверьте версию с помощью следующих команд. # yum install -y java-1.8.0-openjdk-devel # java -version Если установка прошла успешно то, вы увидите следующий вывод. openjdk version "1.8.0_141" OpenJDK Runtime Environment (build 1.8.0_141-b16) OpenJDK 64-Bit Server VM (build 25.141-b16, mixed mode) Установка Apache Maven в CentOS 7 Далее перейдите на официальную страницу загрузки Apache Maven и загрузите последнюю версию или используйте следующую команду wget, чтобы загрузить ее в домашний каталог maven ‘/usr/local/src’. # cd /usr/local/src # wget http://www-us.apache.org/dist/maven/maven-3/3.5.4/binaries/apache-maven-3.5.4-bin.tar.gz Настройка среды Apache Maven Теперь нам нужно сконфигурировать переменные окружения для предварительно скомпилированных файлов Apache Maven в нашей системе, создав файл конфигурации «maven.sh» в каталоге «/etc/profile.d» . # cd /etc/profile.d/ # vim maven.sh Добавьте следующую конфигурацию в файл конфигурации «maven.sh». # Apache Maven Environment Variables # MAVEN_HOME for Maven 1 - M2_HOME for Maven 2 export M2_HOME=/usr/local/src/apache-maven export PATH=${M2_HOME}/bin:${PATH} Теперь сделайте конфигурационный файл «maven.sh» исполняемым, а затем загрузите конфигурацию, выполнив команду «source» . # chmod +x maven.sh # source /etc/profile.d/maven.sh Проверка версии Apache Maven Чтобы проверить установку Apache Maven, выполните следующую команду. # mvn --version И вы должны получить вывод, похожий на следующий: Apache Maven 3.5.4 (1edded0938998edf8bf061f1ceb3cfdeccf443fe; 2018-06-17T19:33:14+01:00) Maven home: /usr/local/src/apache-maven Java version: 9.0.4, vendor: Oracle Corporation, runtime: /opt/java/jdk-9.0.4 Default locale: en_US, platform encoding: UTF-8 OS name: "linux", version: "4.17.6-1.el7.elrepo.x86_64", arch: "amd64", family: "unix" Вот и все! Вы успешно установили Apache Maven 3.5.4 в вашей системе CentOS 7.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59