По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Привет, мир! Сегодня говорим про то, в чем разница между маршрутизатором, коммутатором и хабом. Для сетевого специалиста это можно объяснить просто - хаб работает на первом уровне модели OSI, коммутатор на втором, а маршрутизатор на третьем. На этом все, спасибо, пока! Ладно - ладно, шутка, сейчас попробуем перевести это на человеческий язык. Видеопособие Хаб Хаб, или как его еще называют концентратор, самое простое устройство для соединения нескольких девайсов в одну сеть. В хабе есть несколько портов, в которые подключаются устройства и, хаб - это максимально примитивное устройство, без мозгов. Его задача заключается в том, что когда на вход одного порта приходят данные, он их копирует и рассылает их по всем своим портам. Единственное, что он знает - к каким портам подключены устройства. В итоге все в сети получают эти данные и смотрят на адрес получателя, кому они предназначены. Если ему - то принимают, если не ему, то уничтожают данные. Это как если бы почту вашего соседа получали все жильцы дома, открывали письмо, а если оно не для них, выкидывали бы. Не самый продуктивный и безопасный способ передачи информации. В современных сетях хабы уже не используются. Коммутатор Коммутатор, или как в профессиональной среде его называют свитч, это устройство уже поумнее. К нему также подключаются сетевые устройства в порты для того чтобы образовать сеть, однако, он отличается от хаба тем, что пришедший к нему траффик он высылает уже не на все порты, а непосредственно получателю. Исключения - бродкаст или мультикаст сообщения, которые рассылаются на все порты. Если кратко, бродкаст - широковещательное сообщение. Его получают все устройства в текущей подсети. Пример из жизни - массовая почтовая рассылка всем клиентам компании или надпись баллончиком на входной двери квартиры "Верни долг". Во втором примере кажется, что, она предназначается только одному человеку, но мы то с вами понимаем. Мультикаст - отправляется на специальный адрес, который получат те, кто его слушают. Это как настроить свой приемник на определенную радиоволну и слушать только ее. Откуда он знает куда пересылать данные? У него есть специальная таблица, в которой есть соответствие физического адреса устройства или, как говорят MAC - адреса, (выглядит примерно вот так: 50-46-5D-6E-8C-20) и к какому порту оно подключено. Ориентируясь на эту информацию коммутатор принимает решения о том, куда направить данные. Хабы и коммутаторы используются для построения своей локальной сети, например, дома или в офисе, а вот для того, чтобы соединять сети и передавать данные наружу из этой сети, как, например, в интернет, нам уже понадобятся маршрутизаторы. Маршрутизаторы Маршрутизаторы или роутеры, в отличии от коммутаторов и хабов умеют работать с IP - адресами. Как понятно из названия, машрутизатор занимается тем, что машрутизирует данные из одной сети в другую, основываясь на IP - адресе приходящих к нему данных. Когда к нему приходит пакет с данными, он смотрит на адрес назначения и затем в свою таблицу маршрутизации и после этого принимает решение, что сделать с данными - перенаправить данные в свою сеть или отправить дальше в другую сеть. Это самый умный девайс из нашего сегодняшнего списка, так сказать, сын маминой подруги среди активных сетевых устройств, и он знает топологию сети и куда нужно слать данные, чтобы они достигли цели. Ну и помимо этих основных задач, маршрутизатор также может выступать в качестве DHCP и DNS сервера, иметь настройки безопасности и кучу разных дополнительных функций.
img
В этой серии статей мы рассмотрим поиск и устранение неисправностей NAT (трансляции сетевых адресов) / PAT (трансляции адресов портов), DHCP и FHRP (протоколы избыточности при первом переходе). NAT/PAT может быть проблемным, и не потому, что настройка несколько сложна (хотя и в этом тоже могут быть проблемы). Но в основном потому, что мы можем столкнуться с проблемами маршрутизации, так как мы периодически меняем IP-адреса. Во второй части этой серии мы рассмотрим наиболее распространенные проблемы DHCP и, наконец, закончим серию статей некоторыми проблемами FHRP. Урок 1 В этом сценарии у нас есть 3 устройства. Маршрутизатор с левой стороны называется "Хост", и он представляет компьютер из нашей локальной сети. Предполагается, что устройство с правой стороны - это какой-то веб-сервер - это то, что мы пытаемся найти в Интернете. В середине мы видим наш маршрутизатор, который настроен для NAT и/или PAT. Пользователи из нашей локальной сети жалуются на то, что они ничего не могут найти в Интернете. Они подтвердили, что их IP-адрес и шлюз по умолчанию в порядке. Давайте изучим маршрутизатор NAT: Хорошая идея, чтобы проверить, может ли маршрутизатор NAT достичь веб-сервера, попробовав простой пинг. Если это не работает, вы, по крайней мере, знаете, что у вас есть проблемы с маршрутизацией или, что веб-сервер не работает (или, возможно, просто блокирует ICMP-трафик). Поскольку это веб-сервер, лучше попробовать подключиться к TCP-порту 80. Вы видите, что это работает, так что маршрутизация между маршрутизатором NAT и веб-сервером + подключение к TCP-порту не является проблемой. Мы можем использовать команду show ip nat translations, чтобы увидеть, происходит ли что-нибудь. Мы видим, что NAT-маршрутизатор что-то транслирует, но если вы посмотрите внимательно, то увидите, что это выглядит не совсем правильно. Внешние локальные и глобальные IP-адреса ссылаются ко внутреннему IP-адресу. Давайте посмотрим на конфигурацию ... show ip nat statistics - хорошая команда для проверки вашей конфигурации. Вы можете видеть, что внутренние и внешние интерфейсы поменялись местами. FastEthernet 0/0 должен быть inside, а FastEthernet 1/0 должен быть outside. NAT(config)#interface fastEthernet 0/0 NAT(config-if)#ip nat inside NAT(config)#interface fastEthernet 1/0 NAT(config-if)#ip nat outside Введем команды, которые позволяют исправить настройки, чтобы у нас были правильные внутренние и внешние интерфейсы. Трафик с хоста на веб-сервер теперь работает! Вот как должна выглядеть таблица трансляции NAT. Внутренний локальный IP-адрес - наш внутренний хост. Внутренний глобальный IP-адрес - это то, что мы настроили на внешней стороне нашего маршрутизатора NAT (FastEthernet 1/0). Внешний локальный и глобальный IP-адрес - наш веб-сервер ... проблема решена! Итог урока: убедитесь, что у вас имеются правильные внутренние и внешние интерфейсы. Урок 2 Та же топология, другая проблема! Опять пользователи нашей локальной сети жалуются, что они не могут связаться с веб-сервером. Давайте проверим наш маршрутизатор NAT: NAT#show ip nat translations Сначала мы проверим, транслирует ли маршрутизатор что-либо. Как видите, тихо ничего не происходит! Мы убедились, что внутренний и внешний интерфейсы были настроены правильно. Однако никаких трансляций не происходит. Внутренний источник был определен с помощью списка доступа 1. Давайте поближе рассмотрим этот ACL: Ааа, смотрите ... кажется, кто-то испортил ACL! Устраним эту неполадку: NAT(config)#no access-list 1 NAT(config)#access-list 1 permit 192.168.12.0 0.0.0.255 Мы создадим ACL так, чтобы он соответствовал 192.168.12.0/24. Теперь мы можем связаться с веб-сервером с нашего хоста. Мы видим Hits, если просмотреть NAT statistics. И я вижу трансляцию ... проблема решена! Итог урока: убедитесь, что вы используете правильный список доступа, соответствующий вашим внутренним хостам. Теперь почитатей продожение статьи про устранение неисправностей с DHCP.
img
Создание разделов диска позволяет разделить жесткий диск на несколько разделов, которые действуют независимо. В Linux пользователи должны структурировать устройства хранения (USB и жесткие диски) перед их использованием. Разбиение на разделы также полезно, когда вы устанавливаете несколько операционных систем на одном компьютере. В этом пошаговом руководстве вы узнаете, как создать раздел с помощью команды Linux parted или fdisk. Вариант 1: разбить диск на разделы с помощью команды parted Выполните следующие действия, чтобы разбить диск в Linux с помощью команды parted. Шаг 1. Список разделов Перед созданием раздела составьте список доступных запоминающих устройств и разделов. Это действие помогает определить устройство хранения, которое вы хотите разбить на разделы. Выполните следующую команду с sudo, чтобы вывести список устройств хранения и разделов: sudo parted -l Терминал распечатывает доступные устройства хранения с информацией о: Model - Модель запоминающего устройства. Disk - Имя и размер диска. Sector size - логический и физический размер памяти. Не путать с доступным дисковым пространством. Partition Table - тип таблицы разделов (msdos, gpt, aix, amiga, bsd, dvh, mac, pc98, sun и loop). Disk Flags - разделы с информацией о размере, типе, файловой системе и флагах. Типы разделов могут быть: Primary (Основной) - содержит файлы операционной системы. Можно создать только четыре основных раздела. Extended (Расширенный) - особый тип раздела, в котором можно создать более четырех основных разделов. Logical (Логический) - Раздел, созданный внутри расширенного раздела. В нашем примере есть два устройства хранения - /dev/sda и /dev/sdb Примечание. Первый диск хранения (dev/sda или dev/vda) содержит операционную систему. Создание раздела на этом диске может сделать вашу систему не загружаемой. Создавайте разделы только на дополнительных дисках (dev/sdb, dev/sdc, dev/vdb или dev/vdc). Шаг 2: Откройте диск для хранения Откройте диск хранения, который вы собираетесь разделить, выполнив следующую команду: sudo parted /dev/sdb Всегда указывайте запоминающее устройство. Если вы не укажете имя диска, он будет выбран случайным образом. Чтобы сменить диск на dev/sdb, выполните: select /dev/sdb Шаг 3: Создайте таблицу разделов Прежде чем разбивать диск, создайте таблицу разделов. Таблица разделов расположена в начале жесткого диска и хранит данные о размере и расположении каждого раздела. Типы таблиц разделов: aix, amiga, bsd, dvh, gpt, mac, ms-dos, pc98, sun и loop. Чтобы создать таблицу разделов, введите следующее: mklabel [partition_table_type] Например, чтобы создать таблицу разделов gpt, выполните следующую команду: mklabel gpt Введите Yes, чтобы выполнить: Примечание. Два наиболее часто используемых типа таблиц разделов - это gpt и msdos. msdos поддерживает до шестнадцати разделов и форматирует до 16 ТБ, а gpt форматирует до 9,4 ЗБ и поддерживает до 128 разделов. Шаг 4: проверьте таблицу Запустите команду print, чтобы просмотреть таблицу разделов. На выходе отображается информация об устройстве хранения: Примечание. Запустите команду help mkpart, чтобы получить дополнительную справку о том, как создать новый раздел. Шаг 5: Создайте раздел Давайте создадим новый раздел размером 1854 Мбайт, используя файловую систему ext4. Назначенное начало диска должно быть 1 МБ, а конец диска - 1855 МБ. Чтобы создать новый раздел, введите следующее: mkpart primary ext4 1MB 1855MB После этого запустите команду print, чтобы просмотреть информацию о вновь созданном разделе. Информация отображается в разделе Disk Flags: В таблице разделов gpt, тип раздела - это обязательное имя раздела. В нашем примере primary - это имя раздела, а не тип раздела. Чтобы сохранить свои действия и выйти, введите команду quit. Изменения сохраняются автоматически с помощью этой команды. Примечание. Сообщение «You may need to update /etc/fstab file» сигнализирует о том, что раздел может быть смонтирован автоматически во время загрузки. Вариант 2: разбить диск на разделы с помощью команды fdisk Выполните следующие действия, чтобы разбить диск в Linux с помощью команды fdisk. Шаг 1. Список существующих разделов Выполните следующую команду, чтобы вывести список всех существующих разделов: sudo fdisk -l Вывод содержит информацию о дисках и разделах хранилища: Шаг 2: Выберите диск для хранения Выберите диск для хранения, на котором вы хотите создать разделы, выполнив следующую команду: sudo fdisk /dev/sdb Диск /dev/sdbstorage открыт: Шаг 3: Создайте новый раздел Запустите команду n, чтобы создать новый раздел. Выберите номер раздела, набрав номер по умолчанию (2). После этого вас попросят указать начальный и конечный сектор вашего жесткого диска. Лучше всего ввести в этом разделе номер по умолчанию (3622912). Последний запрос связан с размером раздела. Вы можете выбрать несколько секторов или установить размер в мегабайтах или гигабайтах. Введите + 2 GB, чтобы установить размер раздела 2 ГБ. Появится сообщение, подтверждающее создание раздела. Шаг 4: запись на диск Система создала раздел, но изменения не записываются на диск. 1. Чтобы записать изменения на диск, выполните команду w: 2. Убедитесь, что раздел создан, выполнив следующую команду: sudo fdisk -l Как видите, раздел /dev/sdb2 создан. Отформатируйте раздел После создания раздела с помощью команды parted или fdisk отформатируйте его перед использованием. Отформатируйте раздел, выполнив следующую команду: sudo mkfs -t ext4 /dev/sdb1 Смонтировать раздел Чтобы начать взаимодействие с диском, создайте точку монтирования (mount point) и смонтируйте к ней раздел. 1. Создайте точку монтирования, выполнив следующую команду: sudo mkdir -p /mt/sdb1 2. После этого смонтируйте раздел, введя: sudo mount -t auto /dev/sbd1 /mt/sdb1 Терминал не распечатывает вывод, если команды выполнены успешно. 3. Убедитесь, что раздел смонтирован, с помощью команды df hT:
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59