По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Решение Cisco для контактных центров UCCX является решением для взаимодействия с клиентом. Основными функциями CCX является обеспечение функционала голосового меню Interactive Voice Response (IVR) и распределение вызова Automatic Call Distribution (ACD). Голосовое меню (IVR) это программный продукт, обеспечивающий клиента возможностью самообслуживания. Обычно, IVR используется для входящих вызовов. При звонке клиенту предлагается нажать одну или несколько кнопок для связи с тем, или иным отделом, предоставляется возможность распознавания речи Automatic Speech Recognition (ASR), автоматически произносится запрашиваемая информация по технологии Text to Speech (TTS). Данное взаимодействие осуществляется по протоколу Media Resource Control Protocol (MRCP), который описан в RFC 4463. Посмотрите структуру взаимодействия UCCX в корпоративном сегменте: Корпоративная сеть с элементом контактного центра на базе решение Cisco Unified Contact Center Express весьма обширна, поэтому, давайте разбираться: Голосовой шлюз - Соединяет Cisco Unified Communications Manager (CUCM) к сегмента телефонной сети общего пользования (ТфОП). Входящие и исходящие транзакции проходят через голосовой шлюз; Кластер серверов CUCM - Обеспечивает функционал телефонии для оконечных устройств (End point), управляет шлюзами по протоколу MGCP, телефонной сигнализацией SIP/SCCP/H.323 и видеоконференцсвязью; UCCX сервер - Обеспечивает функционал многоуровневого голосового меню (IVR) и распределения звонков между операторами; Редактор сценариев IVR (CCX script editor) - Программа, предназначенная для создания, изменения, проверки и отладки сценариев голосового меню, выполненная в виде графического редактора; Ноутбук администратора (Desktop Work Flow Administrator) - Утилита для конфигурации агентов и определения работы агентов; Система отчетности (Cisco Unified Intelligence Center) - Система отчетности. Обеспечивает удобный интерфейс взаимодействия супервизора для просмотра отчетов по работе операторов и производительности контактного центра; Внешние БД - Базы данных, из которых UCCX может получать информацию, например, чтобы предоставлять ее автоматическими средствами TTS звонящему клиенту; ASR/TTS сервер - Сервер, на котором расположены программный продукты для синтеза и распознавания речи; Веб - интерфейс продукта сделан в привычном для Cisco дизайне: Сервер Cisco UCCX, как и любой другой продукт, создан для получения прибыли и, соответственно, имеет лицензионные и пакетные ограничения. В данном описании собраны опции, которые ограничиваются лицензией: Порты IVR (лицензируются поштучно); Проигрывание аудио файлов и обработка цифр по DTMF; Контроль вызова, такой как ответ, отбой, трансфер и так далее; Отказоустойчивость (требуется дополнительная лицензия); Интеграция с корпоративными продуктами через Java DataBase Connectivity (JDBC) интерфейс; Обработка HTTP запросов; Обработка исходящих e-mail; VXML поддержка для голосовых технологий; Интеграция через CTI интерфейс; Обработка XML; Интеграция с сервисами TTS/ASR по протоколу MRCP; Функции автосекретаря; Историческая отчетность и реального времени; Распределение опций по пакетам и соответствующее лицензирование: Опция Cisco Unified CCX Standard Cisco Unified CCX Enhanced Cisco Unified CCX Premium Порты IVR Не ограничено. Определяется производительностью сервера Есть Два IVR порта на одного агента, интеграция по интерфейсу JDBC, исходящие e-mail, VXML для голосовых приложений. Аудио файлы и обработка DTMF Есть Есть Есть Контроль вызова Есть Есть Есть Маршрутизация вызовов, ACD алгоритм и очереди. Есть Есть Есть Контроль агента Контроль вызова, коды отбоя, контроль очереди в реальном времени Автоматические задачи, CTI процессы, запись вызовов по требованию, интегрированный чат Интегрированное место, работа с e-mail и чатами, исходящий обзвон, возможности WFO. Отчетность Есть Дополнительная историческая отчетность реального времени Есть Место «супервизора» Контроль агентов, метрики реального времени для распределения вызовов. Командный чат, мониторинг без ведома агента, запись разговора агента по требованию Есть Функции автосекретаря Есть Есть Есть Интеграция с Cisco IM&P Есть Есть Есть SNMP индикаторы Есть Есть Есть Отказоустойчивость Нет Есть Есть Приоритет в очереди Нет Есть Есть MRCP для TTS/ASR Нет Нет Есть Сервер Cisco UCCX может быть установлен в виртуальной среде VMware, а так же, на следующих аппаратных платформах: Сервера серии MCS-78xx (MCS-7815, MCS-7816, MCS-7835, MCS-7845) Сервера серии HP DL IBM сервера X – серии. Виртуальная машина на Unified Computing System (UCS) B и C серии. Голосовые шлюзы для исходящего обзвона должны иметь прошивку IOS 15.1 (3) T или выше. Поддерживаемые модели 28xx, 29xx, 38xx, 39xx.
img
Новое в IPv6-это автоконфигурация, которая является почти "мини-DHCP" - сервером, и некоторые протоколы были удалены или изменены. Точно так же, как IPv4, хосты, настроенные на IPv6, должны узнать MAC-адрес других устройств, но мы больше не используем ARP, он был заменен протоколом под названием NDP (Neighbour Discovery Protocol). Теоретические основы Помимо изучения MAC-адресов, NDP используется для решения ряда задач: Router Discovery (обнаружение маршрутизаторов): NDP используется для изучения всех доступных маршрутизаторов IPv6 в подсети. Обнаружение MAC-адресов: после того, как хост выполнил проверку DAD и использует IPv6 адрес он должен будет обнаружить MAC адреса хостов с которыми он хочет общаться. DAD (обнаружение дубликатов адресов): каждый хост IPv6 будет ждать, чтобы использовать свой адрес, если только он не знает, что ни одно другое устройство не использует тот же адрес. Этот процесс называется DAD, и NDP делает это за нас. SLAAC: NDP используется, чтобы узнать, какой адрес и длину префикса должен использовать хост. Мы рассмотрим все задачи, чтобы увидеть, как они работают. Начнем с обнаружения маршрутизатора. Когда хост настроен на IPv6, он автоматически обнаруживает маршрутизаторы в подсети. Хост IPv6 может использовать NDP для обнаружения всех маршрутизаторов в подсети, которые могут использоваться в качестве шлюза по умолчанию. В принципе, хост отправляет сообщение с запросом, есть ли там какие-либо маршрутизаторы, и маршрутизаторы ответят. Используются два сообщения: RS (Router Solicitation), который отправляется на "все маршрутизаторы ipv6" FF02::2 multicast адрес. RA (Router Advertisement) отправляется маршрутизатором и включает в себя его link-local IPv6 адрес. Когда хост отправляет запрос маршрутизатору, маршрутизатор будет отвечать на одноадресный адрес хоста. Маршрутизаторы также будут периодически отправлять рекламные объявления маршрутизаторов для всех заинтересованных сторон, они будут использовать для этого адрес FF02:: 1 "все узлы". Большинство маршрутизаторов также будут иметь global unicast адрес, настроенный на интерфейсе, в этом случае хосты будут узнавать не только о link-local адресе, но и о префиксе, который используется в подсети. Этот префикс можно использовать для SLAAC. NPD также используется в качестве замены ARP. Для этого он использует два вида сообщений: NS (Neighbor Solicitation) NA (Neighbor Advertisement) Запрос соседа работает аналогично запросу ARP, он запрашивает определенный хост для своего MAC-адреса, и объявление соседа похоже на ответ ARP, поскольку оно используется для отправки MAC-адреса. В основном это выглядит так: Всякий раз, когда хост посылает запрос соседу, он сначала проверяет свой кэш, чтобы узнать, знает ли он уже MAC-адрес устройства, которое он ищет. Если его там нет, он пошлет соседу запрос. Эти соседние запрашивающие сообщения используют solicited-node multicast адрес запрашиваемого узла. Помимо обнаружения MAC-адресов, сообщения NS и NA также используются для обнаружения дубликатов IPv6-адресов. Прежде чем устройство IPv6 использует одноадресный адрес, оно выполнит DAD (обнаружение дубликатов адресов), чтобы проверить, не использует ли кто-то другой тот же IPv6-адрес. Если адрес используется, хост не будет его использовать. Вот как это выглядит: Host1 был настроен с IPv6-адресом 2001:1:1:1::2, который уже используется Host2. Он будет посылать запрос соседства, но поскольку host2 имеет тот же IPv6-адрес, он ответит объявлением соседа. Host1 теперь знает, что это дубликат IPv6-адреса. Эта проверка выполняется для всех одноадресных адресов, включая link-local адреса. Это происходит, когда вы настраиваете их и каждый раз, когда интерфейс находится в состоянии "up". Последний NPD, который мы рассмотрим, - это SLAAC, которая позволяет хостам автоматически настраивать свой IPv6-адрес. Для IPv4 мы всегда использовали DHCP для автоматического назначения IP-адреса, шлюза по умолчанию и DNS-сервера нашим хостам, и эта опция все еще доступна для IPv6 (мы рассмотрим ее ниже). DHCP прекрасная "вещь", но недостатком является то, что вам нужно установить DHCP-сервер, настроить пул с диапазонами адресов, шлюзами по умолчанию и DNS-серверами. Когда мы используем SLAAC, наши хосты не получают IPv6-адрес от центрального сервера, но он узнает префикс, используемый в подсети, а затем создает свой собственный идентификатор интерфейса для создания уникального IPv6-адреса. Вот как работает SLAAC: Хост сначала узнает о префиксе с помощью сообщений NDS RS RA. Хост принимает префикс и создает идентификатор интерфейса, чтобы создать уникальный IPv6-адрес. Хост выполняет DAD, чтобы убедиться, что IPv6-адрес не используется никем другим. Маршрутизаторы Cisco будут использовать EUI-64 для создания идентификатора интерфейса, но некоторые операционные системы будут использовать случайное значение. Благодаря SLAAC хост будет иметь IPv6-адрес и шлюз, но один элемент все еще отсутствует...DNS-сервер. SLAAC не может помочь нам с поиском DNS-сервера, поэтому для этого шага нам все еще требуется DHCP. DHCP для IPv6 называется DHCPv6 и поставляется в двух формах: Stateful Stateless Мы рассмотрим DHCPv6 чуть позже, но для SLAAC нам нужно понять, что такое stateless DHCPv6. Обычно DHCP-сервер отслеживает IP-адреса, которые были арендованы клиентами, другими словами, он должен сохранять "состояние" того, какие IP-адреса были арендованы и когда они истекают. Сервер stateless DHCPv6 не отслеживает ничего для клиентов. Он имеет простую конфигурацию с IPv6-адресами нескольких DNS-серверов. Когда хост IPv6 запрашивает у сервера DHCPv6 IPv6-адрес DNS-сервера, он выдает этот адрес, и все. Поэтому, когда вы используете SLAAC, вам все еще нужен stateless DHCPv6, чтобы узнать о DNS-серверах. Теперь вы узнали все задачи, которые NPD выполняет для нас: Router Discovery MAC Address Discovery Duplicate Address Detection Stateless Address Autoconfiguration Настройка на Cisco Давайте посмотрим на NPD на некоторых маршрутизаторах, чтобы увидеть, как он работает в реальности. Будет использоваться следующая топология для демонстрации: Будем использовать OFF1 в качестве хоста, который будет автоматически настраиваться с помощью SLAAC и OFF2 в качестве маршрутизатора. 2001:2:3:4//64 это префикс, который мы будем использовать. Давайте сначала настроим OFF2: OFF2(config)#ipv6 unicast-routing Прежде чем OFF2 будет действовать как маршрутизатор, нам нужно убедиться, что включена одноадресная маршрутизация IPv6. Теперь давайте настроим IPv6 адрес на интерфейсе: OFF2(config)#interface fa0/0 OFF2(config-if)#no shutdown OFF2(config-if)#ipv6 address 2001:2:3:4::1/64 Перед настройкой OFF1 мы включим отладку NPD на обоих маршрутизаторах, чтобы могли видеть различные сообщения: OFF1#debug ipv6 nd ICMP Neighbor Discovery events debugging is on OFF2#debug ipv6 nd ICMP Neighbor Discovery events debugging is on Команда debug ipv6 nd очень полезна, так как она будет показывать различные сообщения, которые использует NPD. Давайте теперь настроим OFF1: OFF1(config)#interface fa0/0 OFF1(config-if)#no shutdown OFF1(config-if)#ipv6 address autoconfig OFF1 будет настроен для использования SLAAC с командой ipv6 address autoconfig. При включенной отладке вы увидите на своей консоли следующие элементы: OFF1# ICMPv6-ND: Sending NS for FE80::C000:6FF:FE7C:0 on FastEthernet0/0 ICMPv6-ND: DAD: FE80::C000:6FF:FE7C:0 is unique. Он посылает NS для своего собственного IPv6-адреса, и когда никто не отвечает, он понимает, что это единственный хост, использующий этот адрес. Вы также можете видеть, что OFF1 отправляет объявление соседства в сторону OFF2: OFF1# ICMPv6-ND: Sending NA for FE80::C000:6FF:FE7C:0 on FastEthernet0/0 OFF2# ICMPv6-ND: Received NA for FE80::C000:6FF:FE7C:0 on FastEthernet0/0 from FE80::C000:6FF:FE7C:0 Мы можем просмотреть базу данных с информацией L2 и L3 следующим образом: OFF2#show ipv6 neighbors IPv6 Address Age Link-layer Addr State Interface FE80::C000:6FF:FE7C:0 21 c200.067c.0000 STALE Fa0/0 show ipv6 neighbors покажет вам IPv6-адреса и MAC-адреса. OFF1 также отправит запрос маршрутизатора, а OFF2 в ответ отправит объявление маршрутизатора: OFF1# ICMPv6-ND: Sending RS on FastEthernet0/0 OFF2# ICMPv6-ND: Received RS on FastEthernet0/0 from FE80::C000:6FF:FE7C:0 ICMPv6-ND: Sending solicited RA on FastEthernet0/0 ICMPv6-ND: Sending RA from FE80::C001:6FF:FE7C:0 to FF02::1 on FastEthernet0/0 ICMPv6-ND: MTU = 1500 ICMPv6-ND: prefix = 2001:2:3:4::/64 onlink autoconfig ICMPv6-ND: 2592000/604800 (valid/preferred) OFF1# ICMPv6-ND: Received RA from FE80::C001:6FF:FE7C:0 on FastEthernet0/0 ICMPv6-ND: Selected new default router FE80::C001:6FF:FE7C:0 on FastEthernet0/0 Если вы хотите увидеть все маршрутизаторы, о которых знает ваш хост, вы можете использовать следующую команду: OFF1#show ipv6 routers Router FE80::C001:6FF:FE7C:0 on FastEthernet0/0, last update 0 min Hops 64, Lifetime 1800 sec, AddrFlag=0, OtherFlag=0, MTU=1500 HomeAgentFlag=0, Preference=Medium Reachable time 0 msec, Retransmit time 0 msec Prefix 2001:2:3:4::/64 onlink autoconfig Valid lifetime 2592000, preferred lifetime 604800 Поскольку OFF1 настроен для SLAAC он будет использовать префикс в объявлении маршрутизатора для настройки самого себя: OFF1# ICMPv6-ND: Prefix Information change for 2001:2:3:4::/64, 0x0 - 0xE0 ICMPv6-ND: Adding prefix 2001:2:3:4::/64 to FastEthernet0/0 ICMPv6-ND: Sending NS for 2001:2:3:4:C000:6FF:FE7C:0 on FastEthernet0/0 ICMPv6-ND: Autoconfiguring 2001:2:3:4:C000:6FF:FE7C:0 on FastEthernet0/0 ICMPv6-ND: DAD: 2001:2:3:4:C000:6FF:FE7C:0 is unique. Он будет использовать префикс и автоматически настраивать IPv6-адрес. Прежде чем он использует адрес, он будет использовать DAD, чтобы убедиться, что адрес уникален. Давайте посмотрим IPv6-адрес: OFF1#show ipv6 int brief FastEthernet0/0 [up/up] FE80::C000:6FF:FE7C:0 2001:2:3:4:C000:6FF:FE7C:0 Как вы видите, OFF1 использовал 2001:2:3:4::/64 префикс для настройки самого себя. Это вся информация о NPD для вас сейчас, давайте продолжим изучение материала обратив подробное внимание на DHCPv6! Статусный DHCPv6 работает аналогично DHCP для IPv4. Мы все еще используем его для предоставления адресов, шлюзов по умолчанию, DNS-серверов и некоторых других опций клиентам, но одним из ключевых отличий являются сообщения, которые мы теперь используем. DHCP для IPv4 использует сообщения Discover, Offer, Request и ACK. DHCPv6 использует Solicit, Advertise, Request и Reply message. Время получения сообщения, похожие на сообщения обнаружения. Хост будет использовать это сообщение, когда он ищет IPv6-адрес сервера DHCPv6. Сообщение advertise используется для предоставления хосту IPv6-адреса, шлюза по умолчанию и DNS-сервера. Сообщение запроса используется хостом, чтобы спросить, можно ли использовать эту информацию, и ACK отправляется сервером для подтверждения этого. Аналогично, как и для DHCP IPv4, когда ваш DHCP-сервер не находится в той же подсети, вам потребуется DHCP relay для пересылки сообщений DHCP на центральный DHCP-сервер.
img
Многие пользуются возможностями, которые предоставляет виртуализация, но на 64-битной системе Windows – если Hyper-V включен, то в VirtualBox будет отсутствовать возможность создавать 64-битные виртуальные машины – учитывая, что потребность в создании таких виртуалок все-таки может возникнуть, то мы решили перечислить несколько способов как быстро включатьвыключать Hyper-V. Первый способ Первый способ также описывает процесс первоначального включения Hyper-V – сперва нужно открыть окно Windows Features и найти пункт Hyper-V (как на скриншоте ниже): Соответственно, если вам необходимо установить 64-битную машину на VirtualBox, нужно снять галочку Hyper-V и перезагрузить компьютер. Второй способ – с помощью PowerShell Сперва требуется запустить PowerShell (оболочка, разработанная Microsoft для конфигурации и автоматизации различных задач). Самое простое – ввести Powershell в строку поиска и кликнуть на нужное приложение. Далее, есть две команды, одна соответственно включает, а вторая отключает функционал виртуализации. Enable-WindowsOptionalFeature -Online -FeatureName Microsoft-Hyper-V –All - включение; Disable-WindowsOptionalFeature -Online -FeatureName Microsoft-Hyper-V-All - соответственно выключение; Помните, что PowerShell должен быть запущен в elevated режиме – для этого просто нажмите правой кнопкой и запустите от имени администратора, иначе можете увидеть ошибку как на скриншоте ниже. Третий и четвёртый способы - через командную строку Важно – командную строку также необходимо запускать от имени администратора 3 способ -для включения нужно выполнить команду dism.exe /Online /Enable-Feature:Microsoft-Hyper-V /All , а для выключения, соответственно, нужно Enable заменить на Disable. Четвертый способ похож на предыдущий, только команды отличаются: Для включения – bcdedit /set hypervisorlaunchtype auto Для выключения - bcdedit /set hypervisorlaunchtype off Заключение Итак, мы привели в пример несколько возможных способов включения и выключения Hyper-V, для меня самым удобным является первый способ – через Windows Features. На мой личный вкус, возможности Hyper-V богаче, чем у VirtualBox, особенно в плане выделения ресурсов процессора, памяти, QoS и т.д. Однако, VirtualBox выгодно выделяется тем, что не требует включенной функции Intel Virtualization Technology (Intel VT) в BIOS.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59