По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Сегодня мы подробно расскажем про наиболее используемые в сети интернет протоколы – POP3, IMAP и SMTP. Каждый из указанных протоколов имеет определенное назначение и функциональные возможности. Давайте попробуем разобраться. Как работает электронная почта: SMTP, IMAP, POP3 Протокол POP3 и его порты Post Office Protocol 3 (POP3) это стандартный протокол почты созданные для получения электронных писем с удаленного сервера на e-mail клиент.POP3 позволяет вам сохранить почтовое сообщение на ваш компьютер и даже прочесть его, в случае, если вы находитесь не в сети. Важно отметить, что если вы решили использовать POP3 для подключения к учетной записи почты, письма, которые уже скачаны на компьютер, будут удалены с почтового сервера. Как пример, если вы используете несколько компьютеров для подключения к одному почтовому аккаунту, то протокол POP3 может быть не лучшим выбором в данной ситуации. С другой стороны, так как почта хранится локально, на ПК конкретного пользователя, это позволяет оптимизировать дисковое пространство на стороне почтового сервера. По умолчанию, протокол POP3 использует следующие порты: Порт 110 – это порт протокола POP3 по умолчанию. Не является безопасным. Порт 995 – этот порт следует использовать в том случае, если вы хотите установить безопасное соединение. Протокол IMAP и порты Internet Message Access Protocol (IMAP) – это почтовый протокол, созданный для доступа к почте с локального почтового клиента. IMAP и POP3 – наиболее популярные в сети интернет протоколы, используемые для получения e-mail. Оба этих протокола поддерживается всеми современными почтовыми клиентами (MUA - Mail User Agent) и WEB – серверами. В то время как POP3 позволяет доступ к почте только с одного приложения, IMAP позволяет доступ из множества клиентов. По этой причине, IMAP наиболее адаптивен в тех случаях, когда доступ к одному почтовому аккаунту необходим для нескольких пользователей. По умолчанию, протокол IMAP использует следующие порты: Порт 143 – порт по умолчанию. Не безопасен. Порт 993 – порт для безопасного соединения. Протокол SMTP и его порты Simple Mail Transfer Protocol (SMTP) – это стандартный протокол для отправки почтовых сообщений по сети интернет. Данный протокол описан в RFC 821 и RFC 822, впервые опубликованных в августе 1982 года. В рамках данных RFC, формат адреса должен быть в формате имя_пользователя@доменное_имя. Доставка почты, аналогична работе обычной почтовой службы: например, письмо на адрес ivan_ivanov@merionet.ru, будет интерпретирован так: ivan_ivanov – адрес, а merionet.ru – почтовый индекс. Если доменное имя получателя отличается от доменного имени отправителя, то MSA (Mail Submission Agent) отправит письмо через Mail Transfer Agent (MTA). Главная идея MTA в том, чтобы перенаправлять письма в другую доменную зону, по аналогии, как традиционная почты отправляет письма в другой город или область. MTA так же получает почту от других MTA. Протокол SMTP использует следующие порты: Порт 25 – порт SMTP по умолчанию. Не безопасен. Порт 2525 – данный порт используется в том случае, если интернет провайдер фильтрует порт 25. Порт 465 – порт для безопасного соединения.
img
Примечание: в статье рассматривается управление уже установленным и настроенным оборудованием. Мне на работе достались два работающих SDH мультиплексора Huawei уровня STM-4 (622 Мбит/c). Система мониторинга и управления уже была настроена, и я осваивал ее "как есть". Краткое описание ПО для конфигурирования Для работы с оборудованием на рабочей станции, подключенной к интерфейсу управления мультиплексором, я запускаю две программы IManager T2000LCT-Server и IManager T2000LCT-Client, в которой и произвожу работы по конфигурированию. Для запуска ПО требуется данные о логине и пароле. При запуске клиента отображается окно, в котором приведен список всех сконфигурированных мультиплексоров, их наименования, состояние подключения к ним и уровень текущих аварий. На приведенном скриншоте оборудование, к которому непосредственно подключен ПК управления, имеет значение в столбце Gateway GNE, а мультиплексор, доступ к которому настроен через канал связи в тракте STM (то есть тот, который территориально расположен в другом месте и доступен удаленно), имеет значение Gateway Non-GNE. В столбце Login отображается статус "Not Login", а в столбце Communication состояние "Communication Interruption". Это означает, что оператор не авторизован в оборудовании, так как с ним нет. В таком состоянии можно просматривать конфигурацию, которая была в мультиплексорах во время последнего подключения, но текущие параметры посмотреть не получится, как и внести какие-либо изменения. Выбрав из списка необходимый мультиплексор, нажимаем внизу кнопку "NE Explorer" и попадаем в интерфейс управления конкретной единицы оборудования. Здесь мы увидим список всех установленных плат и их состояние в окошке слева вверху, а также функции, доступные для выделенной платы, в окошке слева внизу. Если выделить корень дерева оборудования (Рис.3), то получаем список функций, применимый ко всему мультиплексору (функции мультиплексора и его плат не пересекаются). Общий вид оборудования и наименование установленных плат можно посмотреть непосредственно в интерфейсе управления, нажав на иконку <Slot Layot>: Типы плат (для мультиплексора Huawei OSN1500): Модуль вентиляторов FAN Платы Q1SL4 плата линейного интерфейса STM-4. Сюда подключается оптика, которая соединяет оборудование с другим мультиплексором. Платы ECXL плата, отвечающая за кросс-коннект (коммутацию) Платы GSCC плата управления и мониторинга всем мультиплексором Модули питания PIU Платы D12S интерфейсная плата 120 ом портов E1 (32 порта) Плата AUX плата вспомогательных интерфейсов (служебный телефон, порт RS-232) Плата PQ1 интерфейсная плата портов E1. Позволяет вывести 63 потока E1. Плата N1EFS4 интерфейсная плата портов Ethernet. На плате 4 порта. Типы плат (для мультиплексора Huawei Metro 1000): Плата OI4 Плата линейного интерфейса STM-4 (для соединения с другим мультиплексором) Плата EFS интерфейсная плата портов Ethernet, содержит 4 порта FE 10/100Mb Плата SP2D интерфейсная плата портов E1, может вывести 16 потоков Плата PD2T интерфейсная плата портов E1, выводит 48 потоков Плата X42 модуль кросс-коннекта Плата STG модуль синхронизации и генератора синхросигнала Плата SCC модуль управления и мониторинга всего оборудования Плата OHP2 модуль обработки заголовков Подсказка по функционалу платы отображается внизу окошка общего вида оборудования (показано выше) при выделении какой-либо платы. Конфигурирование потоков E1 Для того, чтобы прописать в оборудовании новый поток уровня E1, откроем один из мультиплексоров, выделим корень дерева оборудования, в дереве функций откроем пункт "Configuration" и в раскрывшемся списке "SDH Service Configuration" (Рис.6) В открывшемся окне отображается список существующих соединений (кросс-коннекты), а также кнопки с возможными действиями в этом окне. Описание столбцов списка кросс-коннектов: Level уровень кросс-коннекта. Здесь мы можем указать тип виртуального контейнера и, соответственно, пропускную способность, которую выделено под данное соединение (а точнее, кратность пропускной способности). То есть, если выбран уровень VC12, то скорость будет кратна 2 Мбит/с. Если выбрать VC4, то скорость будет кратна 155 Мбит/с (это контейнер уровня STM-1, то есть мы займем целиком 1 STM-1 из 4-трактов STM-4. Type тип соединения, обозначен графическим символом, указывающим, что данное соединения является вводом-выводом (например, вывод на интерфейс E1) или проходным (например, с платы линейного интерфейса на плату интерфейсов Ethernet). Source Slot слот и плата источника кросс-коннекта. Source Timeslot/Path таймслот (порт) источника. Sink Slot - слот и плата точки назначения кросс-коннекта. Sink Timeslot/Path - таймслот (порт) точки назначения. Activation Status статус активации соединения. При создании соединения, оно может быть активировано сразу или позже, после завершения работ по подключению, чтобы избежать появления ложных аварий в системе мониторинга. Так же соединение можно активировать/деактивировать по необходимости в данном окне с помощью соответствующих кнопок. Для создания нового соединения нажмем кнопку <Create> и увидим следующее окно, в котором задаются все вышеперечисленные параметры: В появившемся окошке указываем: Level VC12 Direction (направление) оставляем Bidirectional (то есть, двунаправленное соединение) Source Slot плату-источник. Выбираем плату линейного интерфейса, который соединен с мультиплексором на другой стороне Source VC4 выбираем один из 4-х контейнеров VC4 в тракте STM-4. Source Timeslot Range диапазон таймслотов источника. Здесь оборудование позволяет выбрать несколько тайм-слотов. Это удобно в случае, если нам необходимо создать одновременно несколько соединений между одними и теми же точками. Например, нам необходимо прокинуть 4 потока E1 между данными мультиплексорами. В таком случае, мы зададим 4 таймслота при создании соединения в каждом мультиплексоре. Таким же образом задаются слот (плата) и таймслоты и пункта назначения. В некоторых случаях, для задания путей источника и назначения удобнее будет воспользоваться графическим типом задания параметров. Для этого в полях Source Slot или Sink Slot нажимаем на кнопку с многоточием (Рис.8): В открывшемся окошке мы наглядно можем выбрать плату (2), порт на плате (3), контейнер верхнего уровня в нашем случае, один из четырех VC4 (4) и ниже один или несколько виртуальных контейнеров нижнего уровня VC12. Неактивная кнопка виртуального контейнера означает, что он уже занят. После выбора и закрытия данного окошка, возвращаемся в окно "Create SDH Service", которое мы открыли для создания нового кросс-коннекта. Осталось задать параметр Activate Immediately. При выборе Yes соединение должно быть сразу активным, иначе его нужно активировать вручную. Следует отметить, что иногда данная настройка не применяется, поэтому, после создания соединения, рекомендуется проверить значение поля Activation Status и нажать кнопку Activate в окне списка соединений. После нажатия кнопки ОК наше соединение создано в одном из мультиплексоров. Далее, нам необходимо зайти в оборудование на другом конце линейного тракта (оптического кабеля), и создать такое же соединение, указав в пути источника те же VC4 и VC12, что и на этой стороне. Некоторые настройки портов E1 В главном окне программы управления (верхнее левое окошко), если в дереве оборудования выбрать какую-то плату, то в дереве функций мы получаем доступ к настройкам самой платы. Например, выберем интерфейсную плату портов E1 и откроем ее свойства: Данное окно позволяет изменять некоторые свойства портов. В частности, в поле "Port Name" можно указать произвольное название для порта. Это никак не влияет на работу самого порта, однако улучшает читаемость событий и аварий, которые выдает порт в общем списке событий. Еще одним важным параметром, который облегчает работу при организации или тестировании потоков E1, является "Tributary Loopback". Двойной щелчок в этом поле открывает варианты постановки петли или "заворота" на порту: "Inloop" и "Outloop" - один из которых заворот во внутрь, а другой заворот в сторону подключенного внешнего оборудования. Конфигурирование портов Ethernet Пропуск портов Ethernet выполняется в несколько этапов. Выполняем кросс-коннект тайм-слотов с платы линейных интерфейсов (Q1SL4) на плату интерфейсов Ethernet (N1EFS4). Выполняем кросс-коннект занятых в предыдущем пункте тайм-слотов в внутренний интерфейс VCTRUNK# платы N1EFS4 (всего на плате 12 VCTRUNK) Прописываем на плате N1EFS4 VLAN’ы от VCTRUNK# до физического порта (на плате 4 физических порта) Первый пункт действий выполняется аналогично настройке портов E1, порядок приведен выше. Кросс-коннект виртуальных контейнеров на внутренние интерфейсы платы N1EFS4 В настройках платы N1EFS4 открываем раздел Configuration Ethernet Interface Management Ethernet Interface. В открывшемся окне выбираем Internal port и вкладку Bound Path, здесь нажимаем кнопку Configuration. В появившемся окне выбираем один из внутренних интерфейсов VCTRUNK, и виртуальные контейнеры, которые будут в него включаться: Нажимаем Ок, и сконфигурированный интерфейс появляется в нашем списке. В графе "Bound Paths" мы видим задействованные виртуальные контейнеры, а в графе "Number of Bound Paths" - их общее количество. На вкладке "TAG Attribute" списка внутренних интерфейсов настраивается режим порта: Access не тегированный порт Tag Aware тегированный порт Hybrid гибридный порт Теперь осталось соединить внутренний порт VCTRUNK# с одним из четырех внешних физических портов, прокинув VLAN между этими портами. Прописываем на плате N1EFS4 VLAN’ы от VCTRUNK# до физического порта В настройках платы N1EFS4 открываем раздел Configuration Ethernet Service Ethernet Line Service. В открывшемся окне нажимаем кнопку New. В открывшемся окне указываем порт источник VCTRUNK# и порт назначения например, PORT1. А также укажем VLAN-источник и VLAN назначения (автоматически выставляется один и тот же) В этом же окошке, в разделе Port Attributes есть возможность выбрать режимы для обоих портов (тегированный, не тегированный, гибридный). Следует отметить, что система не будет следить за корректностью режимов и соответствием количества тайм-слотов в соединениях цепочки, как на коммутаторах передачи данных, так что за этим следует следить оператору. Так же в данном окне доступно меню конфигурирования внутренних интерфейсов платы N1EFS4, которое описано в предыдущем подразделе. На этом конфигурирование портов Ethernet на мультиплексоре Huawei OSN1500/Metro1000 окончено. Следует еще раз заметить, что на противоположной стороне (на другом мультиплексоре) настройки кросс-коннекта должны быть аналогичны.
img
Друг, начнем с цитаты: Redis – это высокопроизводительная БД с открытым исходным кодом (лицензия BSD), которая хранит данные в памяти, доступ к которым осуществляется по ключу доступа. Так же Редис это кэш и брокер сообщений. Надо признаться, определение не дает точного понимания, что же такое Redis. Если это так круто, то зачем вообще нужны другие БД? На самом деле, Redis правильнее всего использовать в определенных кейсах, само собой, зная про подводные камни – именно об этом и поговорим. Про установку Redis в CentOS 8 мы рассказываем в этой статье. Redis как база данных Говорим про случай, когда Redis выступает в роли базы данных: Пару слов про ограничения такой модели: Размер БД ограничен доступной памятью Шардинг (техника масштабирования) ведет к увеличению задержки Это NoSQL - никакого языка SQL LUA скриптинг в качестве альтернативы Это нереляционная СУБД! Нет сегментации на пользователей или группы пользователей. Отсутствует контроль доступа Доступ по общему паролю. Что скажут ваши безопасники? Теперь про преимущества модели: Скорость Хранение данных в памяти делает быстрее работу с ними Скрипты на LUA Выполнение прямо в памяти, опять же, ускоряет работу Удобные форматы запросов/данных Geospatial – геоданные (высота, ширина, долгота и так далее) Hyperloglog – статистическе алгоритмы Hash – если коротко, то хэш в Redis делают между строковыми полями и их значениями Алгоритмы устаревания данных Примеры использования Представь, у нас есть приложение, где пользователям необходимо авторизоваться, чтобы выполнять какие – либо действия внутри приложения. Каждый раз, когда мы обновляем авторизационные данные клиента, мы хотим их получать для последующего контроля. Мы могли бы отправлять лист авторизационных параметров (с некими номерами авторизаций, сроком действия с соответствующими подписями), чтобы каждое действие внутри приложения, сопровождалось авторизацонной транзакцией из листа, который мы прислали клиенту. С точки зрения безопасности, в этом подходе нет ничего плохого, если мы храним на своей стороне данные в безопасности и используем Javascript Object Signing and Encryption (JOSE), например. Но проблема появится в том случае, когда наш пользователь имеет более одной авторизации внутри приложения – такие схемы плохо поддаются масштабированию. А что если вместо отправки листа авторизационных параметров, мы сохраним его у себя, а пользователю отправим некий токен, который они должны отправлять для авторизации? Далее, по этому токену, мы легко сможем найти авторизации юзера. Это делает систему гораздо масштабируемой. Redis, такой Redis. Итого, для указанной выше схемы, мы хотим: Скорость Мы не хотим, чтобы пользователь долго ожидал авторизации Масштабирумость системы Сопоставление ключа (токена) с авторизациями юзера А вот, что на эти вызовы может ответить Redis: Redis хранит данные в памяти – он быстрый. Redis можно кластеризовать через компонент Sentinel. Масштабируемость? Пожалуйста. В Redis куча вариантов хранения списков. Самый простой будет являться набором данных. В качестве бонуса от Redis, вы получите механизм экспайринга токенов (устаревания). Все будет работать. Redis как кэш! Redis почти заменил memcached в современных приложениях. Его фичи делают супер – удобным кэширование данных. Ограничения: Значения не могут превышать 512 МБ Отсутствует искусственный интеллект, который будет очищать ваше хранилище данных Профит: Совместное использование кэша разными сервисами по сети Удобные фичи, такие как LUA скриптинг, который упрощает работы с кэшом Временные ограничения для данных Еще один кейс Предположим, перед нами такая задача: приложение, отображает пользователям данные с определенными значениями, которые можно сортировать по множеству признаков. Все наши данные хранятся в БД (например, MySQL) и показывать отсортированные данные нужно часто. Дергать БД каждый раз весьма тяжело и ресурсозатратно, а значит, нам нужно кэшировать данные в отсортированном порядке. Окей, кейс понятен. Рэдис, что скажешь на такие требования? Кэш должен хранить сортированные наборы данных Нам нужно вытаскивать наборы данных внутри наборов данных (для пагинации, например, то есть для переключения между страницами) Это должно быть быстрее, чем пересчет данных с нуля Что скажет Redis: Хранить наборы данных - легко Может вытаскивать сабсеты из наборов - легко Конечно быстрее. Ведь данные хранятся в памяти Redis как брокер сообщений Редис может выступать в качестве брокера сообщений. Схема обычная и весьма базовая - publish–subscribe (pub/sub), или как можно перевести на русский язык «Издатель - подписчик». Как и раньше, давайте обсудим плюсы и минусы, хотя их тут и не так много. Минусы: Только тривиальная модель pub/sub Отсутствие очередей сообщений Ну а плюсы, как обычно для Редиса – скорость и стабильность. Кейс напоследок Простой пример – коллаборация сотрудников одной компании. Предположим, у них есть приложение, где они работают над общими задачами. Каждый пользователь делает свой набор действий, о котором другие пользователи должны знать. А так же, юзеры могут иметь разные экземпляры приложений – десктоп, мобильный или что то еще. Требования по этой задаче: Низкая задержка Мы не хотим иметь трудности в процессе совместной работы сотрудников Стабильная работа и непрерывность Масштабирование Кампания растет и развивается Редис, твой выход! Низкая задержка – да, говорили об этом ранее Стабильность – минимальное количество точек отказа в Redis Стабильная работа и непрерывность Масштабирование – сделаем кластер, нет проблем. Выводы Redis - крутая штука, которая позволяет объединять сервисы и следовать 12 принципам приложений. Для приложений, в которых нагрузка ориентирована на быстрое изменение наборов данных и высокая безопасность данных не имеет завышенных требований – Redis прекрасный выбор. Если данные нуждаются в усиленной защите, Редис подойдет в меньшей степени, лучше посмотрите в сторону MongoDB или Elasticsearch.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59