По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В сегодняшней статье поговорим о модуле звуковых записей System Recordings, который позволяет управлять встроенными, стандартными звуковыми файлами Asterisk, а также дает возможность создавать собственные, которые потом можно использовать для Голосового приветствия, IVR, Очередей и так далее. Добавить запись можно тремя способами: загрузить звуковой файл, записать с помощью браузера и записать через модуль Extensions. Перейдем к настройке и рассмотрим каждый из возможных способов создания новой записи. Традиционно, рассматривать будем на примере FreePBX 13. Способ 1: Загружаем звуковой файл Чтобы попасть в модуль System Recordings необходимо перейти по следующему пути Admin -> System Recordings. Откроется страница добавления новой записи Нажимаем Add Recording Задаем новой записи имя, можно добавить описание. Далее необходимо нажать Browse. Система предложит выбрать какой-нибудь звуковой файл, который находится у вас на компьютере. Также, во FreePBX 13, появилась возможность быстро загружать много файлов по средствам способа Drag and Drop. Важно также отметить, что во FreePBX 13 появилась возможность автоматической конвертации файлов в нужный формат. Для этого предусмотрена опция Convert To, остается только загрузить файл, выбрать нужный формат и нажать Submit, после чего будет создана новая запись с выбранным форматом. Способ 2: Создаем запись с помощью браузера Для этого, в разделе Record Over Browser, нажимаем на красную кнопку. Сразу же начнется запись, произнесите в микрофон заранее заготовленный текст. Нажмите Save Recording. Задайте новой записи имя и нажмите Save Готово, новая запись сразу же загрузится на сервер. Способ 3: Создаем запись через Extension Данная опция будет удобна, если вы планируете часто менять аудио - файлы при создании голосового приветствия, например, в рамках рекламной кампании. В разделе Record Over Extension, вписываем внутренний номер телефонного аппарата, с которого мы хотим производить запись, например 1011, и жмем Call! Система начинает набор данного номера Как только, кто-либо примет звонок, сразу же начнется запись голоса, которая закончится, когда принявший повесит трубку. После чего, система предложит дать записанному фалу имя Остается нажать Save и система сама загрузит запись на сервер.
img
При настройке телефонной маршрутизации очень часто возникает необходимость изменения (корректировки) телефонных номеров, как набираемого (Б-номер), так и инициатора вызова (А-номер, АОН). Например, абоненты вашей станции набирают междугородние/федеральные номера через префикс "8", а вышестоящему оператору связи необходимо передавать номер без префикса, в десятизначном формате. Или вызовы на вашу станцию приходят с кодом зоны, а внутри станции используются номера в 6 или 7 знаков, и лишние символы необходимо удалить. Для корректировки номеров в SoftX3000 существует множество инструментов, применяемые в зависимости от конкретных случаев. Рассмотрим некоторые из них. Таблица корректировки символов DNC Для любых операций с изменением номера используются правила таблицы DNC. Эти правила используются для непосредственной корректировки символов, а все прочие команды определяют, в отношении какого поля (А-номер или Б-номер), на каком направлении (входящее/исходящее) и на какой транк-группе будет применено это правило. Для добавления правила в эту таблицу используется команда ADD DNC. Назначение атрибутов и применение этой команды: Number change index порядковый номер правила. Используется для идентификации правила Number change type тип преобразования номера, принимает значения: NONE номер не изменяется. Используется, если нужно изменить только тип номера MOD изменение цифр номера DEL удаление цифр из номера, указываем позицию, начиная с которой удаляются цифры (Change location) и количество цифр (Change length) INS добавление цифр в номер, указываем позицию, куда вставляем цифры (Change location) и сами цифры (New number) RPL замена цифр в номере, указываем позицию, с которой начинаются цифры для замены (Change location) и сами цифры (New number) Change location позиция цифр, которые подлежат корректировке. Nature of address indicator тип номера, принимает значения: NONE тип номера не изменяется IDN международный номер NDN национальный номер UDN местный номер UNN неизвестный номер SDN специальный номер New number добавляемые (изменяемые) цифры. Для наглядности приведем реальные примеры таких правил: В таблице выше: Правило №2 изменяет первый символ в номере (Change location 0) на цифру 8 (New number). Правило №4 удаляет первые (Change location 0) два символа (Change length - 2) в номере и преобразует тип номера в международный. Правило №9 заменяет первые (Change location 0) шесть символов (Change length - 6) на номер 29xxxx. В системе можно создать 65535 правил, правило под №0 системное, изменению не подлежит. Изменение А и Б номеров на исходящем направлении Для корректировки номеров вызовах в исходящих направлениях используется две таблицы: TGLD здесь компонуются правила для А и Б номера. TGLDIDX указывает транк, в отношении которого применяется правило TGLD и условия, при которых оно применяется. При добавлении записи командой ADD TGLD, необходимо задать следующие обязательные параметры: Bearer index номер правила по порядку. Этот номер будет использоваться для идентификации в таблице TGLDIDX. Trunk seizure point минимальная длина набираемого номера. Caller sending change index правило из таблицы DNC, которое будет применено к А-номеру. Callee sending change index правило из таблицы DNC, применяемое к Б-номеру. Примеры записей TGLD: Здесь запись TGLD=1 изменяет А-номер по правилу DNC=3 и Б-номер по правилу DNC=12. Далее, необходимо привязать созданное правила TGLD к транкам. Для этого используем команду ADD TGLDIDX: Указываем следующие параметры: Trunk group number номер транка, к которому применяется данное правило. Call source code callsource источника вызова, по которому срабатывает правило. Если код отличается, правило не применится. Чтобы применить правило ко всем callsrc, необходимо указать 65534. Local DN set код Local DN set, к которому принадлежат номера/транки, совершающие вызов. Call prefix префикс, при наборе которого срабатывает правило. Bearer index номер правила из таблицы TGLD, которое было создано предыдущей командой. Пример: Рассмотрим правила, применяемые к транку №7 (столбец Trunk group number): Для вызовов с callsource=5 при наборе "8" будет применено правило TGLD=2. Для вызовов с любых прочих callsource при наборе 8 будет применено правило TGLD=17. Для вызовов с любых callsource при наборе 810 будет применено правило TGLD=1. Изменение А и Б номеров на входящем направлении Для изменения атрибутов вызова во входящем направлении применительно ко всем входящим вызовам с определенным callsrc (это может быть группа транков или группа абонентов, объединённых этим параметром), используется таблица PFXPRO. Рассмотрим назначение параметров команды ADD PFXPRO сразу на примере: Параметры имеют следующее назначение: Call source code = 0 правило будет применяться к входящим вызовам с callsrc=0 и только к ним. Call prefix = 871229 правило применяется, если Б-номер начинается с этого префикса (871229). Local DN set = 0 набор номера должен производится с транка или абонента, привязанного к Local DN set = 0. Следует отметить, что вышеуказанный префикс (871229) должен присутствовать в таблице CNACLD с любым атрибутом в указанном Local DN set. Called number change flag = true означает, что Б-номер подлежит изменению. Called number change index = 1 Б-номер будет изменен по правилу DNC=1, которое, для наглядности, приведено ниже: Согласно данному правилу, из номера Б будут удалены первые 4 символа. Reanalysis = true после всех изменений вызов снова будет обработан как вновь поступивший и смаршрутизирован согласно новым параметрам А и Б номеров. Таким образом, вызов, поступивший с атрибутом callsrc=0, в котором Б-номер соответствует шаблону 871229хххх, вновь поступит на обработку, но уже с Б-номером 29хххх, то есть будет вызван 6-значный номер внутреннего абонента станции. Таблица PFXPRO так же позволяет корректировать и А-номер (поля Caller number change flag и Caller number change index), назначить новое значение источника вызова (New call source code) и изменять некоторые другие поля. В нашей станции данная таблица используется в нескольких целях: Приведение Б-номеров по входящему направлению к виду, который мы можем маршрутизировать, то есть: от операторов связи приходит вызов на номер 871229xxxx, а номера абонентов нашей станции 29xxxx, соответственно, нам нужно отрезать первые 4 символа, чтобы распознать нашего абонента. Номера некоторых экстренных служб имеют общий вид (6-значный городской номер), однако абонент набирает короткий номер службы (01, 02, 03). Нам нужно распознать такой набор и подменить номер на реальный. Кроме того, в зависимости от того, в какой местности расположен абонент, номера одной и той же службы могут быть разными. Для того, чтобы учесть этот аспект, мы и используем атрибут callsrc (назначаем каждому району свой callsrc и в соответствии с ним осуществляем подмену набранного номера). Изменение атрибутов вызова на входящем направлении на определенном транке Для корректировки атрибутов вызова на входящем транке используется таблица CLRDSN. Запись CLRDSN привязывается к определенному транку командой ADD TGDSG. В самой команде CLRDSN можно создать несколько правил корректировки, которые будут срабатывать в зависимости от А-номера: Для добавления правила даем команду ADD CLRDSN: Здесь заполняем следующие поля: Discrimination group number номер правила, по этому номеру выполняется привязка к транку в команде ADD TGDSG (в предыдущем примере, например, мы рассматривали параметры правила №5). Caller number номер вызывающего, то есть А-номер. Можем указать конкретный номер или начальный префикс (например, если указать 995, правило будет действовать на все вызовы, которые совершаются с номеров, начинающихся на 995). Есть возможность использовать так называемый символ "Wildcard", то есть применить к любым возможным номерам, для этого вводим символ "E". Префикс в данном поле должен быть таким же, как он приходит из транка. Например, если установить префикс 906, а из транка номер буден приходить 8906 или 7906 правило не сработает. Address nature тип А-номера. Позволяет ограничить применение правила только к А-номерам определенного типа, то есть, только для Unknown неизвестный International международный National междугородный Subscriber местный All все типы номеров Function code тип действия с вызовом. Выбираем ATT(Modify caller attribute), то есть изменение атрибутов А-номера. Call source code если установить значение, код callsource будет изменен. Если оставит пустым, будет установлен callsource = 0. (Однажды потратил полдня, пока не обнаружил эту особенность). Number change index правило DNC, которое будет применено к А-номеру. Если дать команду с тем же номером Discrimination group number, но другими параметрами, правило будет добавлено в ту же группу. Таким образом, мы добавим правила для разных номеров (или разных типов номеров) в одну группу и сможем привязать ее к транку. Как было сказано ранее, привязку правила CLRDSN к транку выполняется командой ADD TGDSG. Мы используем данную функцию для нескольких сценариев. Сценарий 1 Подмена номера от подключенной УПАТС. Например, имеем некоторую УПАТС, которая подключена к нашей станции. Мы выдали им номер из нашей емкости, которую они, в том числе, должны использовать в качестве А-номера (29хххх). Однако, по какой-то причине, в поле А-номера абонент присылает нам внутренние номера своей станции (101, 102 и т.д.). а) Добавим правило DNC, которое выполнит полную подмену номера на тот, который должен быть: б) Создадим правило, в котором применим правило DNC=15 (number change index = 15), ко всем входящим вызовам (number = E, Adress nature = All number): в) Привяжем правило CLRDSN=30 к транку №30 командой ADD TGDSG: Сценарий 2 Блокировка нежелательных вызовов с транка (например, для спам-звонков). Для блокировки вызовов в станции создан Local DNset с пустой таблицей маршрутизации (в таблице CNACLD нет никаких записей), и создан callsource (callsrc=4), привязанный к этому Local DNset. При совпадении А-номера с нежелательным, вызову назначается callsrc=4, тем самым вызов не сможет быть смаршрутизирован и будет отбит. Сценарий 3 Фильтрация входящих вызовов с транка. В данном случае, изначально присваиваем траку callsrc=4, тем самым, по-умолчанию, все входящие вызовы будут запрещены. Затем создаются правила CLRDSN с определенными условиями, при соблюдении которых входящий вызов может быть смаршрутизирован. При выполнении этих условий код callsrc заменяется на разрешенный и вызов проходит. Условиями для проверки обычно выступают префикс А-номера. Например, при входящих вызовах от сотового оператора все А-номера должны начинаться на с символа "9". При входящих вызовах с наших УПАТС А-номер должен начинаться с цифр "29" и т.д. Изменение атрибутов вызова по Б-номеру для внутренних абонентов Данная функция может использоваться для разных задач. Одна из них ограничение исходящих вызовов для определенного абонента на определенный номер. В нашем примере это будут исходящие вызовы на префикс 810, то есть международные вызовы (эту задачу можно решить и другими способами). Используем команду ADD CNACLR: Здесь выделим следующие параметры: Call source code код callsrc, к которому принадлежит номер. Call prefix префикс, при наборе которого срабатывает правило. Caller number номер телефона абонента, к которому применяется правило. Здесь так же применимо выражение wildcard, то есть применить правило к любому номеру, установив символ "E". Function code тип обработки вызова. В данном случае используем изменение Б-номера, выбрав Modify caller attribute. Caller number change index правило DNC, которое применяется к А-номеру. Called number change index правило DNC, которое применяется к Б-номеру. Reanalysis flag = true устанавливаем данный флаг для повторной обработки вызова в таблице маршрутизации с новыми параметрами. Приведенное правило используется в следующем сценарии. В организации приобретен номер 8-800, вызовы на которые переадресуются на локальный номер станции 29хххх. При помощи данного правила мы можем обнаружить набор этого номера 8800 локальными абонентами и подменить его на локальный номер назначения внутри станции, тем самым избежав тарификации этих вызовов на платформе 8800, а так же снизив внешний трафик. Применение данных функций и команд не ограничивается приведенными сценариями, и ограничено только фантазией и лицензиями оборудования. Версия станции Huawei SoftX3000 V300R600, но команды будут применимы на более свежих версиях, а принцип их применения такой же.
img
Перед тем как начать, почитайте материал про топологию сетей. Обнаружение соседей позволяет плоскости управления узнать о топологии сети, но как узнать информацию о достижимых пунктах назначения? На рисунке 8 показано, как маршрутизатор D узнает о хостах A, B и C? Существует два широких класса решений этой проблемы - реактивные и упреждающие, которые обсуждаются в следующих статьях. Реактивное изучение На рисунке 8 предположим, что хост A только что был включен, а сеть использует только динамическое обучение на основе передаваемого трафика данных. Как маршрутизатор D может узнать об этом недавно подключенном хосте? Одна из возможностей для A - просто начать отправлять пакеты. Например, если A вручную настроен на отправку всех пакетов по назначению, он не знает, как достичь к D, A должен отправить в хотя бы один пакет, чтобы D обнаружил его существование. Узнав A, D может кэшировать любую релевантную информацию на некоторое время - обычно до тех пор, пока A, кажется, отправляет трафик. Если A не отправляет трафик в течение некоторого времени, D может рассчитать запись для A в своем локальном кэше. Этот процесс обнаружения достижимости, основанный на фактическом потоке трафика, является реактивным открытием. С точки зрения сложности, реактивное обнаружение торгует оптимальным потоком трафика против информации, известной и потенциально переносимой в плоскости управления. Потребуется некоторое время, чтобы сработали механизмы реактивного обнаружения, то есть чтобы D узнал о существовании A, как только хост начнет посылать пакеты. Например, если хост F начинает посылать трафик в сторону а в тот момент, когда A включен, трафик может быть перенаправлен через сеть на D, но D не будет иметь информации, необходимой для пересылки трафика на канал, а следовательно, и на A. В течение времени между включением хоста A и обнаружением его существования пакеты будут отброшены-ситуация, которая будет казаться F в худшем случае сбоем сети и некоторым дополнительным джиттером (или, возможно, непредсказуемой реакцией по всей сети) в лучшем случае. Кэшированные записи со временем должны быть отключены. Обычно для этого требуется сбалансировать ряд факторов, включая размер кэша, объем кэшируемой информации об устройстве и частоту использования записи кэша в течение некоторого прошедшего периода времени. Время ожидания этой кэшированной информации и любой риск безопасности какого-либо другого устройства, использующего устаревшую информацию, являются основой для атаки. Например, если A перемещает свое соединение с D на E, информация, которую D узнал об A, останется в кэше D в течение некоторого времени. В течение этого времени, если другое устройство подключается к сети к D, оно может выдавать себя за A. Чем дольше действительна кэшированная информация, тем больше вероятность для выполнения этого типа атаки. Упреждающее изучение Некоторая информация о доступности может быть изучена заранее, что означает, что маршрутизатору не нужно ждать, пока подключенный хост начнет отправлять трафик, чтобы узнать об этом. Эта возможность имеет тенденцию быть важной в средах, где хосты могут быть очень мобильными; например, в структуре центра обработки данных, где виртуальные машины могут перемещаться между физическими устройствами, сохраняя свой адрес или другую идентифицирующую информацию, или в сетях, которые поддерживают беспроводные устройства, такие как мобильные телефоны. Здесь описаны четыре широко используемых способа упреждающего изучения информации о доступности: Протокол обнаружения соседей может выполняться между граничными сетевыми узлами (или устройствами) и подключенными хостами. Информация, полученная из такого протокола обнаружения соседей, может затем использоваться для введения информации о доступности в плоскость управления. Хотя протоколы обнаружения соседей широко используются, информация, полученная через эти протоколы, не используется широко для внедрения информации о доступности в плоскость управления. Информацию о доступности можно получить через конфигурацию устройства. Почти все сетевые устройства (например, маршрутизаторы) будут иметь доступные адреса, настроенные или обнаруженные на всех интерфейсах, обращенных к хосту. Затем сетевые устройства могут объявлять эти подключенные интерфейсы как достижимые места назначения. В этой ситуации доступным местом назначения является канал (или провод), сеть или подсеть, а не отдельные узлы. Это наиболее распространенный способ получения маршрутизаторами информации о доступности сетевого уровня. Хосты могут зарегистрироваться в службе идентификации. В некоторых системах служба (централизованная или распределенная) отслеживает, где подключены хосты, включая такую информацию, как маршрутизатор первого прыжка, через который должен быть отправлен трафик, чтобы достичь их, сопоставление имени с адресом, услуги, которые каждый хост способен предоставить, услуги, которые каждый хост ищет и/или использует, и другую информацию. Службы идентификации распространены, хотя они не всегда хорошо видны сетевым инженерам. Такие системы очень распространены в высокомобильных средах, таких как беспроводные сети, ориентированные на потребителя. Плоскость управления может извлекать информацию из системы управления адресами, если она развернута по всей сети. Однако это очень необычное решение. Большая часть взаимодействия между плоскостью управления и системами управления адресами будет осуществляться через локальную конфигурацию устройства; система управления адресами назначает адрес интерфейсу, а плоскость управления выбирает эту конфигурацию интерфейса для объявления в качестве достижимого назначения. Объявление достижимости и топология После изучения информации о топологии и доступности плоскость управления должна распространить эту информацию по сети. Хотя метод, используемый для объявления этой информации, в некоторой степени зависит от механизма, используемого для расчета путей без петель (поскольку какая информация требуется, где рассчитывать пути без петель, будет варьироваться в зависимости от того, как эти пути вычисляются), существуют некоторые общие проблемы и решения, которые будут применяться ко всем возможным системам. Основные проблемы заключаются в том, чтобы решить, когда объявлять о доступности и надежной передаче информации по сети. Решение, когда объявлять достижимость и топологию Когда плоскость управления должна объявлять информацию о топологии и доступности? Очевидным ответом может быть "когда это будет изучено", но очевидный ответ часто оказывается неправильным. Определение того, когда объявлять информацию, на самом деле включает в себя тщательный баланс между оптимальной производительностью сети и управлением объемом состояния плоскости управления. Рисунок 9 будет использован для иллюстрации. Предположим, хосты A и F отправляют данные друг другу почти постоянно, но B, G и H вообще не отправляют трафик в течение некоторого длительного периода. В этой ситуации возникают два очевидных вопроса: Хотя для маршрутизатора C может иметь смысл поддерживать информацию о доступности для B, почему D и E должны поддерживать эту информацию? Почему маршрутизатор E должен поддерживать информацию о доступности хоста A? С точки зрения сложности существует прямой компромисс между объемом информации, передаваемой и удерживаемой в плоскости управления, и способностью сети быстро принимать и пересылать трафик. Рассматривая первый вопрос, например, компромисс выглядит как способность C отправлять трафик из B в G при его получении по сравнению с C, поддерживающим меньше информации в своих таблицах пересылки, но требующимся для получения информации, необходимой для пересылки трафика через некоторый механизм при получении пакетов, которые должны быть переадресованы. Существует три общих решения этой проблемы. Проактивная плоскость управления: плоскость управления может проактивно обнаруживать топологию, вычислять набор путей без петель через сеть и объявлять информацию о достижимости. Упреждающее обнаружение топологии с реактивной достижимостью: плоскость управления может проактивно обнаруживать топологию и рассчитывать набор путей без петель. Однако плоскость управления может ждать, пока информация о доступности не потребуется для пересылки пакетов, прежде чем обнаруживать и / или объявлять о доступности. Реактивная плоскость управления: плоскость управления может реактивно обнаруживать топологию, вычислять набор путей без петель через сеть (обычно для каждого пункта назначения) и объявлять информацию о доступности. Если C изучает, сохраняет и распределяет информацию о доступности проактивно или в этой сети работает проактивная плоскость управления, то новые потоки трафика могут перенаправляться через сеть без каких-либо задержек. Если показанные устройства работают с реактивной плоскостью управления, C будет: Подождите, пока первый пакет в потоке не направится к G (к примеру) Откройте путь к G с помощью некоторого механизма Установите путь локально Начать пересылку трафика в сторону G Тот же процесс должен быть выполнен в D для трафика, перенаправляемого к A от G и F (помните, что потоки почти всегда двунаправленные). Пока плоскость управления изучает путь к месту назначения, трафик (почти всегда) отбрасывается, потому что сетевые устройства не имеют никакой информации о пересылке для этого достижимого места назначения (с точки зрения сетевого устройства достижимый пункт назначения не существует). Время, необходимое для обнаружения и создания правильной информации о пересылке, может составлять от нескольких сотен миллисекунд до нескольких секунд. В это время хост и приложения не будут знать, будет ли соединение в конечном итоге установлено, или если место назначения просто недоступно. Плоскости управления можно в целом разделить на: Проактивные системы объявляют информацию о доступности по всей сети до того, как она понадобится. Другими словами, проактивные плоскости управления хранят информацию о доступности для каждого пункта назначения, установленного на каждом сетевом устройстве, независимо от того, используется эта информация или нет. Проактивные системы увеличивают количество состояний, которые передаются и хранятся на уровне управления, чтобы сделать сеть более прозрачной для хостов или, скорее, более оптимальной для краткосрочных и чувствительных ко времени потоков. Реактивные системы ждут, пока информация о пересылке не потребуется для ее получения, или, скорее, они реагируют на события в плоскости данных для создания информации плоскости управления. Реактивные системы уменьшают количество состояний, передаваемых на уровне управления, делая сеть менее отзывчивой к приложениям и менее оптимальной для кратковременных или чувствительных ко времени потоков. Как и все компромиссы в сетевой инженерии, описанные здесь два варианта, не являются исключительными. Можно реализовать плоскость управления, содержащую некоторые проактивные и некоторые реактивные элементы. Например, можно построить плоскость управления, которая имеет минимальные объемы информации о доступности, описывающей довольно неоптимальные пути через сеть, но которая может обнаруживать более оптимальные пути, если обнаруживается более длительный или чувствительный к качеству обслуживания поток. Что почитать дальше? Советуем материал про реактивное и упреждающее распределение достижимости в сетях.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59