По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В данной статье будет рассмотрен модуль Asterisk CLI – Command Line Interface, другими словами – консоль Asterisk. Данный инструмент является многоцелевым и может выполнять следующие функции: Получение информации о системных компонентах Asterisk Настройка системной конфигурации Просмотр логов, ошибок и предупреждений в реальном времени Генерация звонков в целях проведения тестов Просмотр расширенной документации – для API, приложений, функций, настройки модулей и так далее. Далее рассмотрим процесс вызова консоли – есть несколько путей. Через веб-интерфейс FreePBX Для этого необходимо открыть веб-интерфейс Вашей АТС и далее пройти по следующему пути: Admin –> Asterisk CLI После этого откроется страница, на которой можно вводить команды. По SSH С помощью удаленного доступа – по SSHTelnet с использованием терминала (к примеру, PuTTy). При таком типе подключения необходимо будет ввести логин и пароль, и затем ввести команду: [root@localhost ~]#asterisk -rvvvv Примечание: Количество букв «v» означает уровень логирования в CLI. Т.е чем больше букв – тем больше информации будет «сыпаться» на экран. Как только был получен доступ, возможно будет вывести следующую информацию: Телефонные звонки Регистрацию абонентов Уведомления о появлении новых абонентов Запросить перезагрузку системных компонентов (экстеншенов, транков и т.д) Все команды имеют следующий синтаксис: module name -> action type -> parameters (Название модуля –> Тип действия -> Параметры) К примеру – команда sip show peers, которая выведет список зарегистрированных chan_sip абонентов. Если же ваша АТС работает некорректно – к примеру, Asterisk не стартует вообще, стоит попробовать вызвать консоль с другим набором настроек, которые позволят начать специфическую отладку приложений – логирование порядка загрузки, соединения с базой данной, количества попыток регистрации и прочее. Кроме того, есть возможность запускать команды CLI без непосредственного ввода команд, описанных выше. Для этого необходимо напрямую обратиться к модулю Asterisk: [root@localhost ~]#asterisk -rx 'reload now' К примеру, данная команда перезагрузит весь модуль Asterisk. Самые нужные команды Ниже будут приведены описания некоторых часто используемых команд: localhost*CLI>DIALPLAN SHOW \ вывод вашего диалплана (правила маршрутизации вызовов) localhost*CLI>CORE SHOW TRANSLATION \ вывод таблицы с методами транскодирования кодеков localhost*CLI>SIP SET DEBUG PEER PHONE_EXT \ запуск отладки определенного экстеншена (с указанием номера экстеншена) localhost*CLI>SIP SET DEBUG IP PEER_IP \ запуск отладки определенного абонента по его сетевому адресу localhost*CLI>SIP SET DEBUG OFF \ отключение режима отладки localhost*CLI>RELOAD \ перезагрузка модуля Asterisk, не всей АТС целиком. Может использоваться после внесения измерений localhost*CLI>RESTART NOW \ перезагрузка всей системы в целом, может понадобиться если команды reload недостаточно или в целях регулярной плановой перезагрузки. Главная команда, которую нужно усвоить – help, она выводит все прочие команды. Очень удобный внутренний инструмент.
img
Telnet - это протокол прикладного уровня в модели TCP / IP. Этот протокол позволяет устройству (клиенту Telnet) подключаться к удаленному хосту (серверу Telnet), используя TCP в качестве протокола транспортного уровня. Обычно сервер Telnet прослушивает соединения Telnet на TCP-порту 23. Устройство, на котором работает VRP, может функционировать как клиент Telnet и сервер Telnet. Например, вы можете войти в систему и использовать его в качестве клиента Telnet для подключения к другому устройству через Telnet. На рисунке 1 показан такой сценарий, в котором R1 функционирует как сервер Telnet и клиент Telnet для ПК и R2 соответственно. Вход в устройство через Telnet Чтобы войти в устройство с ПК под управлением операционной системы Windows, выберите "Пуск"> "Выполнить" и выполните команду telnet ip-address. Например, чтобы войти в устройство с IP-адресом 10.137.217.177, введите команду telnet 10.137.217.177 и нажмите OK (рис. 2). В появившемся диалоговом окне входа в систему введите имя пользователя и пароль. Если аутентификация прошла успешно, отобразится приглашение командной строки <Huawei>. Управление файлами VRP использует файловую систему для управления всеми файлами и каталогами на устройстве. Базовые концепции Файловая система VRP используется для создания, удаления, изменения, копирования и отображения файлов и каталогов, которые хранятся во внешнем хранилище устройства, которое для маршрутизаторов Huawei представляет собой флэш-память и SD-карты, а для коммутаторов Huawei - флэш-память и CF-карты. Некоторые устройства также используют внешние USB-диски в качестве дополнительных устройств хранения. На внешнем запоминающем устройстве могут храниться файлы различных типов, включая файл конфигурации, файл системного программного обеспечения, файл лицензии и файл исправления (patch). Файл системного программного обеспечения является файлом операционной системы VRP и должен храниться в формате .cc в корневом каталоге внешнего запоминающего устройства. Содержимое этого файла загружается в память устройства и запускается при включении устройства. Резервное копирование файла конфигурации В некоторых сценариях, таких как обновление системы, может потребоваться создать резервную копию файла конфигурации устройства в определенной папке на внешнем запоминающем устройстве. В следующем примере описан процесс резервного копирования, предполагая, что вы уже вошли в R1 через ПК (рис. 3). Задание файла для резервного копирования Команда dir [/all] [filename | directory] отображает файлы по указанному пути. all указывает,что отображаются все файлы и каталоги в текущем пути, включая любые файлы в корзине. filename указывает файл. Directory задает каталог. Чтобы проверить файлы и каталоги в корневом каталоге флэш-памяти R1, выполните следующую команду: В этом примере будет создана резервная копия файла конфигурации vrpcfg.zip размером 1351 байт. Создание каталога Запустите команду mkdir directory, чтобы создать каталог. directory определяет имя создаваемого каталога (включая путь к нему). Чтобы создать каталог backup в корневом каталоге (root) флэш-памяти устройства, выполните следующую команду: Копирование и переименование файла конфигурации Запустите команду copy source-filename destination-filename, чтобы скопировать файл. source-filename (имя-источника) указывает путь и имя исходного файла. destination-filename (имя-назначения) указывает путь и имя файла назначения. Чтобы скопировать файл конфигурации vrpcfg.zip в каталог backup и переименовать файл в vrpcfgbak.zip, выполните следующую команду: Проверьте, что файл был скопирован. Выполните команду cd directory, чтобы изменить текущий рабочий каталог. Чтобы проверить, было ли успешно выполнено резервное копирование файла конфигурации, выполните следующие команды: Выходные данные команды показывают, что каталог backup содержит файл vrpcfgbak.zip, что означает, что файл конфигурации vrpcfg.zip был скопирован. Передача файлов TFTP Trivial File Transfer Protocol (TFTP) - это простой протокол прикладного уровня в модели TCP / IP, используемый для передачи файлов. Он использует UDP в качестве протокола транспортного уровня с портом 69. TFTP работает в модели клиент/сервер. Маршрутизаторы и коммутаторы Huawei работают только как клиенты TFTP. На рис. 4 ПК функционирует как сервер TFTP, а маршрутизатор - как клиент TFTP. TFTP используется для передачи файла системного программного обеспечения VRP с ПК на маршрутизатор. Команда tftp tftp-server {get / put} source-filename [destination-filename] настраивает TFTP для передачи файлов. tftp-server задает IP-адрес сервера TFTP. get указывает, что файл должен быть загружен с сервера TFTP на клиент TFTP. put указывает, что файл должен быть загружен с клиента TFTP на сервер TFTP. source-filename указывается имя файла-источника. destination-filename указывает имя файла назначения. Чтобы загрузить файл системного программного обеспечения VRP devicesoft.cc с компьютера на маршрутизатор выполните следующую команду: TFTP прост в реализации и использовании, но не обеспечивает никакой безопасности (например, он не проверяет учетные данные пользователя или не шифрует данные). Любой желающий может загружать или скачивать файлы на серверы TFTP или с них, что делает TFTP подходящим для передачи файлов только в защищенных сетевых средах. Для повышения безопасности используйте FTP или SFTP. FTP Подобно TFTP, протокол передачи файлов (FTP) является протоколом прикладного уровня в модели TCP / IP. Он использует TCP в качестве протокола транспортного уровня с портом 21. Маршрутизаторы и коммутаторы Huawei, на которых работает VRP, могут функционировать как FTP-серверы, а также как FTP-клиенты. По сравнению с TFTP FTP более безопасен, так как для установки FTP-соединения требуются учетные данные пользователя. Кроме того, FTP позволяет удалять файлы, а также создавать и удалять каталоги файлов на FTP-сервере. На рисунке 5 ПК функционирует как FTP-сервер, а маршрутизатор - как FTP-клиент. FTP используется для передачи файла системного программного обеспечения VRP с ПК на маршрутизатор. Запустите команду ftp host-ip [port-number], чтобы создать FTP-соединение. hostip указывает IP-адрес FTP-сервера. port-number указывает номер порта FTP-сервера. По умолчанию используется TCP-порт 21. Запустите команду dir, чтобы проверить список файлов на FTP-сервере. Подобно TFTP, FTP использует ключевые слова get и put: get в команде get source-filename [destination-filename] указывает, что файл должен быть загружен с FTP-сервера на FTP-клиент, и put в команде put source-filename [destinationfilename] указывает, что файл должен быть загружен с FTP-клиента на FTP-сервер. В этом примере команда get vrpsoft.cc devicesoft.cc запускается для загрузки файла программного обеспечения системы VRP vrpsoft.cc с FTP-сервера (ПК) на FTP-клиент (маршрутизатор) и переименования файла devicesoft.cc. FTP передает данные в виде открытого текста. Для повышения безопасности используйте Secure File Transfer Protocol (SFTP) для передачи файлов. SFTP шифрует данные и защищает целостность передаваемых данных. Удаление файла Возможно, вам придется время от времени удалять файлы, чтобы освободить место для хранения. Для этого выполните команду delete [/unreserved] [/force] filename. /unreserved указывает, что файл, подлежащий удалению, не может быть восстановлен. / force указывает, что для удаления указанного файла подтверждение не требуется. filename указывает имя файла, подлежащего удалению. Если параметр / unreserved не настроен, файл, подлежащий удалению, перемещается в корзину и может быть восстановлен с помощью команды undelete. Файл по-прежнему будет занимать место для хранения внутри корзины. Команда reset recycle-bin удаляет все файлы в корзине. После удаления файлов из корзины они не могут быть восстановлены. Чтобы окончательно удалить файл, например abcd.zip, выполните следующие операции: Настройка файла запуска системы Файлы запуска включают файл системного программного обеспечения и другие файлы, загруженные с внешнего запоминающего устройства в память для запуска устройства. Перед установкой следующего файла запуска выполните команду display startup, чтобы проверить файлы запуска, используемые для следующего запуска (next startup). Вывод команды показывает, что файл системного программного обеспечения software.cc будет использоваться для следующего запуска устройства. Команда startup system-software system-file устанавливает файл системного программного обеспечения для следующего запуска. system-file указывает файл. Чтобы использовать файл devicesoft.cc для следующего запуска, выполните следующую команду: Чтобы проверить, вступил ли этот параметр в силу, выполните команду display startup Вывод команды показывает, что файл системного программного обеспечения для следующего запуска был установлен в devicesoft.cc.
img
Все маршрутизаторы добавляют подключенные маршруты. Затем в большинстве сетей используются протоколы динамической маршрутизации, чтобы каждый маршрутизатор изучал остальные маршруты в объединенной сети. Сети используют статические маршруты - маршруты, добавленные в таблицу маршрутизации посредством прямой настройки - гораздо реже, чем динамическая маршрутизация. Однако статические маршруты иногда могут быть полезны, и они также могут быть полезными инструментами обучения. Статические сетевые маршруты IOS позволяет назначать отдельные статические маршруты с помощью команды глобальной конфигурации ip route. Каждая команда ip route определяет пункт назначения, который может быть сопоставлен, обычно с идентификатором подсети и маской. Команда также перечисляет инструкции пересылки, обычно перечисляя либо исходящий интерфейс, либо IP-адрес маршрутизатора следующего перехода. Затем IOS берет эту информацию и добавляет этот маршрут в таблицу IP-маршрутизации. Статический маршрут считается сетевым, когда пункт назначения, указанный в команде ip route, определяет подсеть или всю сеть класса A, B или C. Напротив, маршрут по умолчанию соответствует всем IP-адресам назначения, а маршрут хоста соответствует одному IP-адресу (то есть адресу одного хоста). В качестве примера сетевого маршрута рассмотрим рисунок 1. На рисунке показаны только детали, относящиеся к статическому сетевому маршруту на R1 для подсети назначения 172.16.2.0/24, которая находится справа. Чтобы создать этот статический сетевой маршрут на R1, R1 настроит идентификатор и маску подсети, а также либо исходящий интерфейс R1 (S0/0/0), либо R2 в качестве IP-адреса маршрутизатора следующего перехода (172.16.4.2). Схема сети устанавливает соединение между двумя маршрутизаторами R1, R2 и двумя хостами 1 и 2. Порт G0/0 .1 R1 подключен к шлейфу слева, который, в свою очередь, подключен к хосту 1, имеющему подсеть 172.16. 1.9. Интерфейс S0/0/0 R1 последовательно подключен к R2 с IP-адресом 172.16.4.2. Интерфейс G0/0.2 на R2 подключен к шлейфу, который, в свою очередь, подключен к хосту 2 с IP-адресом 172.16.2.0.9. Здесь маршрутизатор R1 предназначен для адреса 172.16.2.0/24 в подсети. Пакеты должны перемещаться либо с интерфейса S0/0/0 маршрутизатора R1, либо с маршрутизатора R2 с IP-адресом 172.16.2.0/24. В примере 1 показана конфигурация двух примеров статических маршрутов. В частности, он показывает маршруты на маршрутизаторе R1 на рисунке 2 для двух подсетей в правой части рисунка. При настройке сети маршрутизатор R1 имеет соединение с двумя маршрутизаторами R2 и R3 справа. Интерфейс G0/0 .1 маршрутизатора R1 подключен к заглушке слева и, в свою очередь, подключен к хосту A, имеющему подсеть 172.16.1.9 с маской подсети 172.16.1.0 /24. Справа-интерфейс S0/0/1.1 из R1 с маской подсети 172.16.4.0 / 24 подключается к интерфейсу S0/0/1.2 из R2 с маской подсети 172.16.2.0 / 24 через последовательную линию. Кроме того, интерфейс G0/1/ 0.1 из R1 с маской подсети 172.16.5.0 / 24 подключается к интерфейсу G0/0/0 .3 из R3 с маской подсети 172.16.3.0 / 24 через глобальную сеть. Заглушка подключается к интерфейсу G0/0 .2 из R2, где маска подсети равна 172.16.2.0 / 24 и, в свою очередь, подключена к хосту B, имеющему подсеть 172.16.2.9. Заглушка подключается к интерфейсу G0/0 .3 из R3, где маска подсети равна 172.16.3.0 / 24 и, в свою очередь, подключена к хосту C, имеющему подсеть 172.16.3.9. ip route 172.16.2.0 255.255.255.0 S0/0/0 ip route 172.16.3.0 255.255.255.0 172.16.5.3 Пример 1 Добавление статических маршрутов в R1 В двух примерах команд ip route показаны два разных стиля инструкций пересылки. Первая команда показывает подсеть 172.16.2.0, маска 255.255.255.0, которая находится в локальной сети рядом с маршрутизатором R2. Эта же первая команда перечисляет интерфейс S0 / 0/0 маршрутизатора R1 как исходящий интерфейс. Этот маршрут в основном гласит: Чтобы отправить пакеты в подсеть с маршрутизатора R2, отправьте их через мой собственный локальный интерфейс S0/0/0 (который подключается к R2). Второй маршрут имеет такую же логику, за исключением использования различных инструкций пересылки. Вместо того, чтобы ссылаться на исходящий интерфейс R1, он вместо этого перечисляет IP-адрес соседнего маршрутизатора на WAN-канале в качестве маршрутизатора следующего прыжка. Этот маршрут в основном говорит следующее:чтобы отправить пакеты в подсеть с маршрут. Маршруты, созданные этими двумя командами ip route, на самом деле выглядят немного иначе в таблице IP-маршрутизации по сравнению друг с другом. Оба являются статическими маршрутами. Однако маршрут, который использовал конфигурацию исходящего интерфейса, также отмечается как подключенный маршрут; это всего лишь причуда вывода команды show ip route. В примере 2 эти два маршрута перечислены с помощью статической команды show ip route. Эта команда выводит подробную информацию не только о статических маршрутах, но также приводит некоторые статистические данные обо всех маршрутах IPv4. Например, в этом примере показаны две строки для двух статических маршрутов, настроенных в примере 2, но статистика утверждает, что этот маршрутизатор имеет маршруты для восьми подсетей. IOS динамически добавляет и удаляет эти статические маршруты с течением времени в зависимости от того, работает исходящий интерфейс или нет. Например, в этом случае, если интерфейс R1 S0/0/0 выходит из строя, R1 удаляет статический маршрут к 172.16.2.0/24 из таблицы маршрутизации IPv4. Позже, когда интерфейс снова открывается, IOS добавляет маршрут обратно в таблицу маршрутизации. Обратите внимание, что большинство сайтов используют протокол динамической маршрутизации для изучения всех маршрутов к удаленным подсетям, а не статические маршруты. Однако если протокол динамической маршрутизации не используется, сетевому администратору необходимо настроить статические маршруты для каждой подсети на каждом маршрутизаторе. Например, если бы маршрутизаторы имели только конфигурацию, показанную в примерах до сих пор, ПК А (из рис. 2) не смог бы получать пакеты обратно от ПК В, потому что маршрутизатор R2 не имеет маршрута для подсети ПК А. R2 понадобятся статические маршруты для других подсетей, как и R3. Наконец, обратите внимание, что статические маршруты, которые будут отправлять пакеты через интерфейс Ethernet - LAN или WAN, - должны использовать параметр IP-адреса следующего перехода в команде ip address, как показано в примере 2. Маршрутизаторы ожидают, что их интерфейсы Ethernet смогут достичь любого количества других IP-адресов в подключенной подсети. Ссылка на маршрутизатор следующего перехода определяет конкретное устройство в подключенной подсети, а ссылка на исходящий интерфейс локального маршрутизатора не определяет конкретный соседний маршрутизатор. Статические маршруты хоста Ранее в этой лекции маршрут хоста определялся как маршрут к одному адресу хоста. Для настройки такого статического маршрута команда ip route использует IP-адрес плюс маску 255.255.255.255, чтобы логика сопоставления соответствовала только этому одному адресу. Сетевой администратор может использовать маршруты хоста для направления пакетов, отправленных одному хосту по одному пути, а весь остальной трафик - в подсеть этого хоста по другому пути. Например, вы можете определить эти два статических маршрута для подсети 10.1.1.0 / 24 и Хоста 10.1.1.9 с двумя различными адресами следующего перехода следующим образом: ip route 10.1.1.0 255.255.255.0 10.2.2.2 ip route 10.1.1.9 255.255.255.255 10.9.9.9 Обратите внимание, что эти два маршрута перекрываются: пакет, отправленный в 10.1.1.9, который поступает на маршрутизатор, будет соответствовать обоим маршрутам. Когда это происходит, маршрутизаторы используют наиболее конкретный маршрут (то есть маршрут с наибольшей длиной префикса). Таким образом, пакет, отправленный на 10.1.1.9, будет перенаправлен на маршрутизатор следующего прыжка 10.9.9.9, а пакеты, отправленные в другие пункты назначения в подсети 10.1.1.0/24, будут отправлены на маршрутизатор следующего прыжка 10.2.2.2. Плавающие статические маршруты Затем рассмотрим случай, когда статический маршрут конкурирует с другими статическими маршрутами или маршрутами, изученными протоколом маршрутизации. То есть команда ip route определяет маршрут к подсети, но маршрутизатор также знает другие статические или динамически изученные маршруты для достижения этой же подсети. В этих случаях маршрутизатор должен сначала решить, какой источник маршрутизации имеет лучшее административное расстояние, а чем меньше, тем лучше, а затем использовать маршрут, полученный от лучшего источника. Чтобы увидеть, как это работает, рассмотрим пример, проиллюстрированный на рисунке 3, который показывает другую конструкцию, чем в предыдущих примерах, на этот раз с филиалом с двумя каналами WAN: одним очень быстрым каналом Gigabit Ethernet и одним довольно медленным (но дешево) Т1. В этом проекте сеть Open Shortest Path First Version 2 (OSPFv2) по первичному каналу, изучая маршрут для подсети 172.16.2.0/24. R1 также определяет статический маршрут по резервному каналу к той же самой подсети, поэтому R1 должен выбрать, использовать ли статический маршрут или маршрут, полученный с помощью OSPF. Сетевая диаграмма показывает интерфейс G0 / 0 маршрутизатора R1, который подключен к маршрутизатору R2 через ethernet через облако MPLS. Интерфейс S0 / 0 / 1 R1 соединен с маршрутизатором R3 по последовательной линии. R2 и R3 соединены в ядре облака корпоративной сети, имеющего подсеть 172.16.2.0/24. Маршрутизатор R1 достигает подсети либо по OSPF v1 по основному каналу, либо по статическому маршруту по резервному каналу. По умолчанию IOS отдает предпочтение статическим маршрутам, чем маршрутам, изученным OSPF. По умолчанию IOS предоставляет статическим маршрутам административное расстояние 1, а маршрутам OSPF-административное расстояние 110. Используя эти значения по умолчанию на рисунке 3, R1 будет использовать T1 для достижения подсети 172.16.2.0 / 24 в этом случае, что не является удачным решением. Вместо этого сетевой администратор предпочитает использовать маршруты, изученные OSPF, по гораздо более быстрому основному каналу и использовать статический маршрут по резервному каналу только по мере необходимости, когда основной канал выходит из строя. Чтобы отдавать предпочтение маршрутам OSPF, в конфигурации необходимо изменить настройки административного расстояния и использовать то, что многие сетевики называют плавающим статическим маршрутом. Плавающий статический маршрут перемещается в таблицу IP-маршрутизации или перемещается из нее в зависимости от того, существует ли в настоящее время лучший (меньший) маршрут административного расстояния, полученный протоколом маршрутизации. По сути, маршрутизатор игнорирует статический маршрут в то время, когда известен лучший маршрут протокола маршрутизации. Чтобы реализовать плавающий статический маршрут, вам необходимо использовать параметр в команде ip route, который устанавливает административное расстояние только для этого маршрута, делая значение больше, чем административное расстояние по умолчанию для протокола маршрутизации. Например, команда ip route 172.16.2.0 255.255.255.0 172.16.5.3 130 на маршрутизаторе R1 будет делать именно это - установив административное расстояние статического маршрута равным 130. Пока основной канал остается активным, а OSPF на маршрутизаторе R1 изучает маршрут для 172.16.2.0/24, с административным расстоянием по умолчанию 110, R1 игнорирует статический маршрут. Наконец, обратите внимание, что хотя команда show ip route перечисляет административное расстояние большинства маршрутов в виде первого из двух чисел в двух скобках, команда show ip route subnet явно указывает административное расстояние. В примере 3 показан образец, соответствующий этому последнему примеру. Статические маршруты по умолчанию Когда маршрутизатор пытается маршрутизировать пакет, он может не совпадать с IP-адресом назначения пакета ни с одним маршрутом. Когда это происходит, маршрутизатор обычно просто отбрасывает пакет. Маршрутизаторы могут быть сконфигурированы таким образом, чтобы они использовали либо статически настроенный, либо динамически изучаемый маршрут по умолчанию. Маршрут по умолчанию соответствует всем пакетам, так что, если пакет не соответствует какому-либо другому более конкретному маршруту в таблице маршрутизации, маршрутизатор может, по крайней мере, переслать пакет на основе маршрута по умолчанию. Классический пример, когда компании могут использовать статические маршруты по умолчанию в своих корпоративных сетях TCP / IP, - это когда компания имеет много удаленных узлов, каждый из которых имеет одно относительно медленное WAN-соединение. Каждый удаленный узел имеет только один возможный физический маршрут для отправки пакетов в остальную часть сети. Таким образом, вместо использования протокола маршрутизации, который отправляет сообщения по глобальной сети и использует драгоценную полосу пропускания глобальной сети, каждый удаленный маршрутизатор может использовать маршрут по умолчанию, который направляет весь трафик на центральный сайт, как показано на рисунке 4. Соединение состоит из трех маршрутизаторов: Core, B1 и B1000. Последовательные соединения показаны между маршрутизаторами Core - B1 и Core - B1000. Все эти маршрутизаторы подключены к подсети индивидуально. Маршрутизатор B1 отправляет все нелокальные пакеты в Core через интерфейс S0/0/1. Существует также связь между B1 и B1000. IOS позволяет настроить статический маршрут по умолчанию, используя специальные значения для полей подсети и маски в команде ip route: 0.0.0.0 и 0.0.0.0. Например, команда ip route 0.0.0.0 0.0.0.0 S0/0/1 создает статический маршрут по умолчанию на маршрутизаторе B1-маршрут, который соответствует всем IP-пакетам-и отправляет эти пакеты через интерфейс S0/0/1. В примере 4 показан пример статического маршрута по умолчанию с использованием маршрутизатора R2 с рисунка 1. Ранее на этом рисунке вместе с примером 3 был показан маршрутизатор R1 со статическими маршрутами к двум подсетям в правой части рисунка. Пример 4 завершает настройку статических IP-маршрутов путем настройки R2 в правой части рисунка 1 со статическим маршрутом по умолчанию для маршрутизации пакетов обратно к маршрутизаторам в левой части рисунка. Вывод команды show ip route содержит несколько новых и интересных фактов. Во-первых, он перечисляет маршрут с кодом S, что означает статический, но также со знаком *, что означает, что это кандидат в маршрут по умолчанию. Маршрутизатор может узнать о нескольких маршрутах по умолчанию, и затем маршрутизатор должен выбрать, какой из них использовать; * означает, что это, по крайней мере, кандидат на то, чтобы стать маршрутом по умолчанию. Чуть выше "шлюз последней надежды" относится к выбранному маршруту по умолчанию, который в данном случае является только что настроенным статическим маршрутом с исходящим интерфейсом S0/0/1.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59