По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Помимо обычной Windows, которая стоит почти на всех домашних компьютерах, есть версия с названием Windows Server, которая используется для серверов. О ней и поговорим. Windows Server - это целая линейка операционных систем, которые Microsoft специально создает для использования на серверах. Windows Server выпускается под этим названием с момента выпуска Windows Server 2003. Однако даже до этого были доступны серверные версии Windows, например, Windows NT 4.0 была доступна как для обычных домашних компьютеров, так и для серверов. Обычно каждый выпуск Windows Server соответствует обычной пользовательской версии Windows. Например, Windows Server 2003 - это серверная версия Windows XP, Windows Server 2016 основана на Windows 10 Anniversary Update, а Windows Server 2019, основана на версии Windows 10 версии 1809. С первого взгляда не поймешь, чем Windows Server отличается от обычных версий Windows - рабочий стол выглядит так же, есть значки и даже есть кнопка Пуск. Поскольку Windows Server и обычная версия имеют общую базу кода, многие вещи можно делать одинаково и там, и там, например, загружать и устанавливать программы, а многие основные функции включены в Windows Server. Однако в Windows Server не получится найти различные свистелки для пользователя - например Microsoft Store или браузер Edge. Скажем так - серверная версия Windows отлично подходит для корпоративных целей, когда компании нужно создать внутренний или внешний сервис, который будет решать конкретную бизнес задачу. Давайте теперь про основные различия: первое, что Windows Server включает в себя, это специальное корпоративное программное обеспечение, которое называется Enterprise Management Software С помощью него можно давать серверу различные роли, например: Роль Active Directory: это готовая роль, в которой сервер, сможет выступать как контроллер домена, и будет выполнять всю проверку подлинности учетных записей пользователей в компании. Роль DHCP и DNS Server: сервер может автоматически назначать IP-адреса всем устройствам в сети, и резолвить адреса. Быть файловым хранилищем: хранить важные файлы и устанавливать порядок доступа к ним. Службы печати: позволяет обеспечивать общий доступ к принтерам и сканнерам. Службы обновления Windows: можно направлять все обновления рабочей станции через этот сервер и настраивать определенные правила их работы. Веб сервер: позволяет поднимать на этом сервере сервисы, которые будут доступны для других пользователей через web-доступ. И это лишь малая часть возможных ролей в Windows Server. Очень часто кампании имеют больше одного сервера, и конечно же разделяют разные роли между ними. Еще одним важным отличие серверной Windows от пользовательской, это меньшее количество аппаратных ограничений. Например, Windows 10 позволяет юзерам устанавливать 2 ТБ оперативной памяти, что кажется и так очень много, но Windows Server предоставляет до 24 ТБ ОЗУ, потому что компаниям нужны большие мощности. Представь сервер, на котором крутятся десятки виртуальных машин! Конечно ему потребуется много оперативной памяти. А еще Windows Server может обрабатывать больше ядер и процессоров, так как имеет 64 сокета. Помнишь мы сказали, что Windows Server выглядит так же как обычный Windows? Да, но серверная Windows может вообще работать без графической оболочки! Windows Server можно установить двух формах - Server Core или Desktop Experience. Если вы отдадите предпочтение Windows Server Core без графического интерфейса, то будете наслаждаться управлением сервером через командную строку PowerShell, или сможете накатить инструмент с графическим интерфейсом, например RSAT (Remote Server Administration Tools) или Windows Admin Center. Не подумайте, это не мазохизм - это позволяет снизить нагрузку на сервер убрав “тяжелый” интерфейс. А еще многим администраторам, зачастую, удобнее работать с конмадной строке. Что выбрать под мой сервак, спросишь ты? Linux или Windows? Зависит от цели: Linux экономичнее и по деньгам, и по ресурсам, но если ты работаешь с инфраструктурой Microsoft, то тут нужно определенно выбирать Windows Server.
img
Продолжаем рассказывать про механизмы QoS (Quality of Service) . Мы уже рассказаывали про то, какие проблемы могут быть в сети и как на них может повлиять QoS. В этой статье мы поговорим про механизмы работы QoS. Механизмы QoS В связи с тем, что приложения могут требовать различные уровни QoS, возникает множество моделей и механизмов, чтобы удовлетворить эти нужды. Рассмотрим следующие модели: Best Effort –негарантированная доставка используется во всех сетях по умолчанию. Положительная сторона заключается в том, что эта модель не требует абсолютно никаких усилий для реализации. Не используются никакие механизмы QoS, весь трафик обслуживается по принципу “пришел первым – обслужили первым”. Такая модель не подходит для современных сетевых сред; Integrated Services (IntServ) – эта модель интегрированного обслуживания использует метод резервирования. Например, если пользователь хотел сделать VoIP вызов 80 Кбит/с по сети передачи данных, то сеть, разработанная исключительно для модели IntServ, зарезервировала бы 80 Кбит/с на каждом сетевом устройстве между двумя конечными точками VoIP, используя протокол резервирования ресурсов RSVP (Resource Reservation Protocol) . На протяжении звонка эти 80 Кбит/с будут недоступны для другого использования, кроме как для VoIP звонка. Хотя модель IntServ является единственной моделью, обеспечивающей гарантированную пропускную способность, она также имеет проблемы с масштабируемостью. Если сделано достаточное количество резервирований, то сеть просто исчерпает полосу пропускания; Differentiated Services (DiffServ) – модель дифференцированного обслуживания является самой популярной и гибкой моделью для использования QoS. В этой модели можно настроить каждое устройство так, чтобы оно могло использовать различные методы QoS, в зависимости от типа трафика. Можно указать какой трафик входит в определенный класс и как этот класс должен обрабатываться. В отличие от модели IntServ, трафик не является абсолютно гарантированным, поскольку сетевые устройства не полностью резервируют полосу пропускания. Однако DiffServ получает полосу, близкую к гарантированной полосе пропускания, в то же время решая проблемы масштабируемости IntServ. Это позволило этой модели стать стандартной моделью QoS; Инструменты QoS Сами механизмы QoS представляют собой ряд инструментов, которые объединяются для обеспечения уровня обслуживания, который необходим трафику. Каждый из этих инструментов вписывается в одну из следующих категорий: Классификация и разметка (Classification and Marking) - Эти инструменты позволяют идентифицировать и маркировать пакет, чтобы сетевые устройства могли легко идентифицировать его по мере пересечения сети. Обычно первое устройство, которое принимает пакет, идентифицирует его с помощью таких инструментов, как списки доступа (access-list), входящие интерфейсы или deep packet inspection (DPI), который рассматривает сами данные приложения. Эти инструменты могут быть требовательны к ресурсам процессора и добавлять задержку в пакет, поэтому после того как пакет изначально идентифицирован, он сразу помечается. Маркировка может быть в заголовке уровня 2 (data link), позволяя коммутаторам читать его и/или заголовке уровня 3 (network), чтобы маршрутизаторы могли его прочитать. Для второго уровня используется протокол 802.1P, а для третьего уровня используется поле Type of Service. Затем, когда пакет пересекает остальную сеть, сетевые устройства просто смотрят на маркировку, чтобы классифицировать ее, а не искать глубоко в пакете; Управление перегрузками (Congestion Management)– Перегрузки возникают, когда входной буфер устройства переполняется и из-за этого увеличивается время обработки пакета. Стратегии очередей определяют правила, которые маршрутизатор должен применять при возникновении перегрузки. Например, если интерфейс E1 WAN был полностью насыщен трафиком, маршрутизатор начнет удерживать пакеты в памяти (очереди), чтобы отправить их, когда станет доступна полоса пропускания. Все стратегии очередей направлены на то, чтобы ответить на один вопрос: “когда есть доступная пропускная способность, какой пакет идет первым?“; Избегание заторов (Congestion Avoidance) – Большинство QoS механизмов применяются только тогда, когда в сети происходит перегрузка. Целью инструментов избегания заторов является удаление достаточного количества пакетов несущественного (или не очень важного) трафика, чтобы избежать серьезных перегрузок, возникающих в первую очередь; Контроль и шейпинг (Policing and Shaping) – Этот механизм ограничивает пропускную способность определенного сетевого трафика. Это полезно для многих типичных «пожирателей полосы» в сети: p2p приложения, веб-серфинг, FTP и прочие. Шейпинг также можно использовать, чтобы ограничить пропускную способность определенного сетевого трафика. Это нужно для сетей, где допустимая фактическая скорость медленнее физической скорости интерфейса. Разница между этими двумя механизмами заключается в том, что shaping формирует очередь из избыточного трафика, чтобы выслать его позже, тогда как policing обычно сбрасывает избыточный трафик; Эффективность линков (Link Efficiency) – Эта группа инструментов сосредоточена на доставке трафика наиболее эффективным способом. Например, некоторые низкоскоростные линки могут работать лучше, если потратить время на сжатие сетевого трафика до его отправки (сжатие является одним из инструментов Link Efficiency); Механизмы Link Efficiency При использовании медленных интерфейсов возникают две основных проблемы: Недостаток полосы пропускания затрудняет своевременную отправку необходимого объема данных; Медленные скорости могут существенно повлиять на сквозную задержку из-за процесса сериализации (количество времени, которое маршрутизатору требуется на перенос пакета из буфера памяти в сеть). На этих медленных линках, чем больше пакет, тем дольше задержка сериализации; Чтобы побороть эти проблемы были разработаны следующие Link Efficiency механизмы: Сжатие полезной нагрузки (Payload Compression) – сжимает данные приложения, оправляемые по сети, поэтому маршрутизатор отправляет меньше данных, по медленной линии; Сжатие заголовка (Header Compression) – Некоторый трафик (например, такой как VoIP) может иметь небольшой объем данных приложения (RTP-аудио) в каждом пакете, но в целом отправлять много пакетов. В этом случае количество информации заголовка становится значимым фактором и часто потребляет больше полосы пропускания, чем данные. Сжатие заголовка решает эту проблему напрямую, устраняя многие избыточные поля в заголовке пакета. Удивительно, что сжатие заголовка RTP, также называемое сжатым транспортным протоколом реального времени (Compressed Real-time Transport Protocol - cRTP) уменьшает 40-байтовый заголовок до 2-4 байт!; Фрагментация и чередование (Link Fragmentation and Interleaving) - LFI решает проблему задержки сериализации путем измельчения больших пакетов на более мелкие части до их отправки. Это позволяет маршрутизатору перемещать критический VoIP-трафик между фрагментированными частями данных (которые называются «чередованием» голоса); Алгоритмы очередей Постановка в очереди (queuing) определяет правила, которые маршрутизатор должен применять при возникновении перегруженности. Большинство сетевых интерфейсов по умолчанию используют базовую инициализацию First-in, First-out (FIFO) . В этом методе сначала отправляется любой пакет, который приходит первым. Хотя это кажется справедливым, не весь сетевой трафик создается равным. Основная задача очереди - обеспечить, чтобы сетевой трафик, обслуживающий критически важные или зависящие от времени бизнес-приложения, отправлялся перед несущественным сетевым трафиком. Помимо очередности FIFO используются три первичных алгоритма очередности: Weighted Fair Queuing (WFQ)– WFQ пытается сбалансировать доступную полосу пропускания между всеми отправителями равномерно. Используя этот метод, отправитель с высокой пропускной способностью получает меньше приоритета, чем отправитель с низкой пропускной способностью; Class-Based Weighted Fair Queuing (CBWFQ) – этот метод массового обслуживания позволяет указать гарантированные уровни пропускной способности для различных классов трафика. Например, вы можете указать, что веб-трафик получает 20 процентов полосы пропускания, тогда как трафик Citrix получает 50 процентов пропускной способности (вы можете указать значения как процент или конкретную величину полосы пропускания). Затем WFQ используется для всего неуказанного трафика (остальные 30 процентов в примере); Low Latency Queuing (LLQ) - LLQ часто упоминается как PQ-CBWFQ, потому работает точно так же, как CBWFQ, но добавляется компонент приоритета очередей (Priority Queuing - PQ). Если вы указываете, что определенный сетевой трафик должен идти в приоритетную очередь, то маршрутизатор не только обеспечивает пропускную способность трафика, но и гарантирует ему первую полосу пропускания. Например, используя чистый CBWFQ, трафику Citrix может быть гарантированно 50% пропускной способности, но он может получить эту полосу пропускания после того, как маршрутизатор обеспечит некоторые другие гарантии трафика. При использовании LLQ приоритетный трафик всегда отправляется перед выполнением любых других гарантий. Это очень хорошо работает для VoIP, делая LLQ предпочтительным алгоритмом очередей для голоса; Существует много других алгоритмов для очередей, эти три охватывают методы, используемые большинством современных сетей
img
В этой статье мы разберем принцип работы и настройку IP-телефонии по Ethernet сетям. В мире IP-телефонии телефоны используют стандартные порты Ethernet для подключения к сети, и поэтому для отправки и приема голосового трафика, передаваемого посредством IP-пакетов, они используют стек протоколов TCP/IP. Чтобы это работало, необходимо, чтобы порт коммутатора работал как порт доступа, но, в то же время, этот порт работал как магистраль для передачи другого трафика. Принцип работы VLAN для передачи данных и голоса До IP-телефонии компьютер и телефон располагались на одном рабочем месте. Телефон подключался по специальному телефонному кабелю (телефонный UTP-кабель). Причем этот телефон был подключен к специальному голосовому устройству (часто называемому voice switch или частной телефонной станцией private branch exchange [PBX]). ПК, конечно же, подключался с помощью Ethernet кабеля (UTP витой пары) к обычному коммутатору локальной сети, который находился в коммутационном шкафу - иногда в том же коммутационном шкафу, что и голосовой коммутатор (voice switch). На рисунке показана эта идея. Предположим, что у нас есть три виртуальные сети VLAN1, VLAN2 и VLAN3. Виртуальные сети VLAN 1 и VLAN 3 содержат по две пары ПК, которые подключаются к коммутатору через отдельные интерфейсы. Для сети VLAN 1 отведены четыре интерфейса "fa0/12", "fa0/11", "fa0/22", и "fa0/21" соответственно. Аналогично, 4 интерфейса отведены для сети VLAN 3 - "fa0/15", "fa0/16", "fa0/23", и "fa0/24" соответственно. Сеть VLAN 2 состоит из двух ПК, которые подключаются к коммутатору через интерфейсы "Fa0/13" и " Fa0/14". Два коммутатора соединены между собой через магистраль, и интерфейсы "Gi0/1" и "Gi0/2". Термин IP-телефония относится к отрасли сети, в которой телефоны используют IP-пакеты для передачи и приема голоса, представленного битами в части данных IP-пакета. Телефоны подключаются к сети, как и большинство других устройств конечных пользователей, используя либо кабель Ethernet, либо Wi-Fi. Новые IP-телефоны не подключаются непосредственно по кабелю к голосовому коммутатору, а подключаются к стандартной IP-сети с помощью кабеля Ethernet и порта Ethernet, встроенного в телефон. После чего телефоны связываются по IP-сети с программным обеспечением, которое заменило операции вызова и другие функции АТС. Переход от использования стационарных телефонов, которые работали (некоторые работают по сей день) с использованием телефонных кабелей к новым IP-телефонам (которые нуждались в UTP-кабелях, поддерживающих Ethernet) вызвал некоторые проблемы в офисах. В частности: Старые, не IP-телефоны, использовали категорию UTP-кабелей, у которых частотный диапазон не поддерживал скорость передачи данных в 100-Mbps или 1000-Mbps. В большинстве офисов был один кабель UTP, идущий от коммутационного шкафа к каждому столу. Теперь же на два устройства (ПК и IP-телефон) требовалось два кабеля от рабочего стола к коммутационному шкафу. Прокладка нового кабеля к каждому рабочему месту вызовет дополнительные финансовые затраты, и плюс потребуется больше портов коммутатора. Чтобы решить эту проблему, компания Cisco встроила небольшие трехпортовые коммутаторы в каждый телефон. IP-телефоны включают в себя небольшой коммутатор локальной сети, расположенный в нижней части телефона. На рисунке показаны основные кабели, причем кабель коммутационного шкафа подключается напрямую к одному физическому порту встроенного коммутатора телефона, ПК подключается патч-кордом к другому физическому порту телефона, а внутренний процессор телефона подсоединяется к внутреннему порту коммутатора телефона. Компании, использующие IP-телефонию, теперь могут подключать два устройства к одному порту доступа. Кроме того, лучшие практики Cisco, для проектирования IP-телефонии, советуют поместить телефоны в один VLAN, а ПК в другой VLAN. Чтобы это работало, порт коммутатора действует частично в режиме канала доступа (для трафика ПК) и частично как магистраль (для трафика телефона). Особенности настройки VLAN’ов на этом порту: VLAN передачи данных: та же идея настройки, что и VLAN доступа на access порту, но определенная как VLAN на этом канале для пересылки трафика для устройства, подключенного к телефону на рабочем месте (обычно ПК пользователя). Voice VLAN: VLAN для пересылки трафика телефона. Трафик в этой VLAN обычно помечается заголовком 802.1 Q. На рисунке изображена типичная конструкция локальной сети. Имеется коммутатор, подключенный к двум последовательным уровням сетей, VLAN 11 и VLAN 10, где сеть VLAN 11- Voice VLAN, содержащая 4 IP-телефона, и сеть VLAN 10 - Data VLAN, состоящая из 4 ПК. Настройка и проверка работы Data и Voice VLAN Для настройки порта коммутатора, который сможет пропускать голосовой трафик и информационные данные, необходимо применить всего несколько простых команд. Однако разобраться в командах, позволяющих просмотреть настройки режима работы порта, непросто, так как порт действует как access порт во многих отношениях. Ниже показан пример настройки. В данном примере используются четыре порта коммутатора F0/1F0/4, которые имеют базовые настройки по умолчанию. Затем добавляются соответствующие VLAN’ы: VLAN 10 Data Vlan, VLAN 11- Voice Vlan. Далее все четыре порта настраиваются как порты доступа и определяется VLAN доступа (Vlan 10 Date Vlan). В конце настройки определяем на порт VLAN для передачи голосовых данных (Vlan 11- Voice Vlan). Данный пример иллюстрирует работу сети, изображенную на рисунке: При проверке состояния порта коммутатора, из примера выше, увидим разницу в отображаемой информации выходных данных, по сравнению с настройками по умолчанию порта доступа и магистрального порта. Например, команда show interfaces switchport показывает подробные сведения о работе интерфейса, включая сведения о портах доступа. В примере 2 отображены эти детали (подчеркнуты) для порта F0/4 после добавления настроек из первого примера. Первые три выделенные строки в выходных данных отображают детали настройки, соответствующие любому порту доступа. Команда switchport mode access переводит порт в режим порта доступа. Далее, как показано в третьей выделенной строке, команда switchport access vlan 10 определила режим доступа VLAN. Четвертая выделенная строка показывает новый фрагмент информации: идентификатор Voice VLAN, активированная командой switchport voice vlan 11. Эта небольшая строка является единственной информацией об изменении состояния порта.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59