По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В статье рассматриваются примеры протоколов, обеспечивающих Interlayer Discovery и назначение адресов. Первую часть статьи про Interlayer Discovery можно прочитать тут. Domain Name System DNS сопоставляет между собой человекочитаемые символьные строки, такие как имя service1. exemple, используемый на рисунке 1, для IP-адресов. На рисунке 3 показана основная работа системы DNS. На рисунке 3, предполагая, что нет никаких кэшей любого вида (таким образом, весь процесс проиллюстрирован): Хост A пытается подключиться к www.service1.example. Операционная система хоста проверяет свою локальную конфигурацию на предмет адреса DNS-сервера, который она должна запросить, чтобы определить, где расположена эта служба, и находит адрес рекурсивного сервера. Приложение DNS операционной системы хоста отправляет DNS-запрос на этот адрес. Рекурсивный сервер получает этот запрос и - при отсутствии кешей - проверяет доменное имя, для которого запрашивается адрес. Рекурсивный сервер отмечает, что правая часть имени домена именуется example, поэтому он спрашивает корневой сервер, где найти информацию о домене example. Корневой сервер возвращает адрес сервера, содержащий информацию о домене верхнего уровня (TLD) example. Рекурсивный сервер теперь запрашивает информацию о том, с каким сервером следует связаться по поводу service1.example. Рекурсивный сервер проходит через доменное имя по одному разделу за раз, используя информацию, обнаруженную в разделе имени справа, чтобы определить, какой сервер следует запросить об информации слева. Этот процесс называется рекурсией через доменное имя; следовательно, сервер называется рекурсивным сервером. Сервер TLD возвращает адрес полномочного сервера для service1.example. Если информация о местонахождении службы была кэширована из предыдущего запроса, она возвращается как неавторизованный ответ; если фактический сервер настроен для хранения информации об ответах домена, его ответ является авторитетным. Рекурсивный сервер запрашивает информацию о www.service1.example у полномочного сервера. Авторитетный сервер отвечает IP-адресом сервера B. Рекурсивный сервер теперь отвечает хосту A, сообщая правильную информацию для доступа к запрошенной службе. Хост A связывается с сервером, на котором работает www.service1.example, по IP-адресу 2001:db8:3e8:100::1. Этот процесс может показаться очень затяжным; например, почему бы просто не сохранить всю информацию на корневом сервере, чтобы сократить количество шагов? Однако это нарушит основную идею DNS, которая заключается в том, чтобы держать информацию о каждом домене под контролем владельца домена в максимально возможной степени. Кроме того, это сделало бы создание и обслуживание корневых серверов очень дорогими, поскольку они должны были бы иметь возможность хранить миллионы записей и отвечать на сотни миллионов запросов информации DNS каждый день. Разделение информации позволяет каждому владельцу контролировать свои данные и позволяет масштабировать систему DNS. Обычно информация, возвращаемая в процессе запроса DNS, кэшируется каждым сервером на этом пути, поэтому сопоставление не нужно запрашивать каждый раз, когда хосту необходимо достичь нового сервера. Как обслуживаются эти таблицы DNS? Обычно это ручная работа владельцев доменов и доменов верхнего уровня, а также пограничных провайдеров по всему миру. DNS не определяет автоматически имя каждого объекта, подключенного к сети, и адрес каждого из них. DNS объединяет базу данных, обслуживаемую вручную, с распределением работы между людьми, с протоколом, используемым для запроса базы данных; следовательно, DNS попадает в базу данных сопоставления с классом протоколов решений. Как хост узнает, какой DNS-сервер запрашивать? Эта информация либо настраивается вручную, либо изучается с помощью протокола обнаружения, такого как IPv6 ND или DHCP. DHCP Когда хост (или какое-либо другое устройство) впервые подключается к сети, как он узнает, какой IPv6-адрес (или набор IPv6-адресов) назначить локальному интерфейсу? Одним из решений этой проблемы является отправка хостом запроса в какую-либо базу данных, чтобы определить, какие адреса он должен использовать, например DHCPv6. Чтобы понять DHCPv6, важно начать с концепции link local address в IPv6. При обсуждении размера адресного пространства IPv6, fe80:: / 10 был назван зарезервированным для link local address. Чтобы сформировать link local address, устройство с IPv6 объединяет префикс fe80:: с MAC (или физическим) адресом, который часто форматируется как адрес EUI-48, а иногда как адрес EUI-64. Например: Устройство имеет интерфейс с адресом EUI-48 01-23-45-67-89-ab. Этот интерфейс подключен к сети IPv6. Устройство может назначить fe80 :: 123: 4567: 89ab в качестве link local address и использовать этот адрес для связи с другими устройствами только в этом сегменте. Это пример вычисления одного идентификатора из другого. После того, как link local address сформирован, DHCP6 является одним из методов, который можно использовать для получения уникального адреса в сети (или глобально, в зависимости от конфигурации сети). DHCPv6 использует User Datagram Protocol (UDP) на транспортном уровне. Рисунок 4 иллюстрирует это. Хост, который только что подключился к сети, A, отправляет сообщение с запросом. Это сообщение поступает с link local address и отправляется на multicast address ff02 :: 1: 2, порты UDP 547 (для сервера) и 546 (для клиента), поэтому каждое устройство, подключенное к одному и тому же физическому проводу, получит сообщение. Это сообщение будет включать уникальный идентификатор DHCP (DUID), который формирует клиент и использует сервер, чтобы обеспечить постоянную связь с одним и тем же устройством. B и C, оба из которых настроены для работы в качестве серверов DHCPv6, отвечают рекламным сообщением. Это сообщение является одноадресным пакетом, направленным самому A с использованием link local address, из которого A отправляет запрашиваемое сообщение. Хост A выбирает один из двух серверов, с которого запрашивать адрес. Хост отправляет запрос на multicast address ff02 :: 1: 2, прося B предоставить ему адрес (или пул адресов), информацию о том, какой DNS-сервер использовать, и т. д. Сервер, работающий на B, затем отвечает ответом на изначально сформированный link local address A; это подтверждает, что B выделил ресурсы из своего локального пула, и позволяет A начать их использование. Что произойдет, если ни одно устройство в сегменте не настроено как сервер DHCPv6? Например, на рисунке 4, что, если D - единственный доступный сервер DHCPv6, потому что DHCPv6 не работает на B или C? В этом случае маршрутизатор (или даже какой-либо другой хост или устройство) может действовать как ретранслятор DHCPv6. Пакеты DHCPv6, которые передает A, будут приняты ретранслятором, инкапсулированы и переданы на сервер DHCPv6 для обработки. Примечание. Описанный здесь процесс называется DHCP с отслеживанием состояния и обычно запускается, когда в объявлении маршрутизатора установлен бит Managed. DHCPv6 может также работать с SLAAC, для предоставления информации, которую SLAAC не предоставляет в режиме DHCPv6 без сохранения состояния. Этот режим обычно используется, когда в объявлении маршрутизатора установлен бит Other. В тех случаях, когда сетевой администратор знает, что все адреса IPv6 будут настроены через DHCPv6, и только один сервер DHCPv6 будет доступен в каждом сегменте, сообщения с объявлением и запросом можно пропустить, включив быстрое принятие DHCPv6. А теперь почитайте про Address Resolution Protocol - протокол разрешения IPv4-адресов
img
Мир VoIP (Voice over IP) многогранен. На рынке существует целое множество решений для построения корпоративных систем связи – IP – АТС. Нас интересуют программные «open source» решения, поэтому, сегодня мы сравним две популярные телефонные платформы и ответим на вопрос: что круче, FreeSWITCH или Asterisk? :) Про Asterisk Давайте немного теории: Asterisk - программная автоматическая телефонная станция (АТС) на базе протокола IP, которая способна предложить богатый, с точки зрения телефонии, инструментарий для офиса. Asterisk, будучи одной из первых программных IP-АТС был создан в 1999 году как решение с открытым кодом (open source). При поддержке компании Digium в 2005 году IP – АТС увидела свет и была выпущена в «продакшн». Реализация происходит под двумя лицензиями: GNU GPL (General Public License) и патентная лицензия для разработки собственных решений на базе Asterisk, рассчитанных на дальнейшую продажу. Более миллиона пользователь радуются IP – АТС Asterisk каждый день по всему миру :) Но не все так гладко (удар молнии за окном). Исторически, Asterisk имеет ряд проблем, связанных с масштабируемостью, нестабильностью работы при повышении нагрузки. С учетом особенностей лицензирования, многие пользователи (в том числе компании - разработчики) искали новый продукт. Про FreeSWITCH В 2006 году группа бывших разработчиков Asterisk приняли решение разработать альтернативное решение – на свет появился FreeSWITCH. Вдохновленные модульной структурой веб – сервера Apache, команда разработчиков преследовала цель улучшить параметры масштабируемости и стабильности работы на разных платформах. FreeSWITCH создан по модели состояний, вследствие чего, каждый вызов(канал) работает по отдельному потоку данных. Для построения структуры, использовались компоненты open – source решений, такие как, например, Sofia SIP – SIP UA с открытым исходным кодом, созданный компанией Nokia. Что под капотом? Asterisk – модульная структура. Во время работы, Asterisk использует общие ресурсы, включая программные потоки – это главная проблема при большой интенсивности вызовов. Несмотря на сложность и многогранность программного кода, на котором написан Asterisk, он находит огромное множество применений в сети. С другой стороны, FreeSWITCH написан на C, структура которого более понятна и прозрачна. Потоки процессов выполняются последовательно и отдельно для каждого канала, что безусловно отличает Фрисвитч от Asterisk. При этом, как правило, по этой причине FreeSWITCH требует больший объем оперативной памяти (RAM) Отметим, что FreeSWITCH имеет хорошо документированный API (Application Programming Interface), сегментированный по ролям. Такая структура обеспечивает безопасное подключение к API в отличие от Asterisk, где более открытая конструкция API допускает вероятность внесения багов и ошибок. Asterisk базируется на текстовых конфигурационных файлах, в то время как FreeSWITCH использует файлы формата .xml. Безусловно, с точки зрения работы с конфигами для админа, файлы текстового формата проще редактировать, однако, плюсы формата .xml всплывают на этапе автоматизации различных процессов. Требования к железу Оценить общие требования к IP – АТС достаточно сложно, так как в каждой инсталляции используется разный набор фичей и целей эксплуатации. Однако, в таблице ниже сконцентрированы минимальные требования к серверу, на котором будет развернут Asterisk и FreeSWITCH для работы 15 телефонными аппаратами и 5 одновременными вызовами. Сравните их: Параметр FreeSWITCH Asterisk CPU Одно ядро, частота процессор 1 гГц Одно ядро, частота процессор 700 мГц RAM 1 ГБ 512 МБ HDD 10 ГБ 10 ГБ OS Linux, 32/64 бит Linux, 64 бит Как видно, FreeSWITCH потребляет больше RAM. О причине этого мы писали ранее – это связано с архитектурой. Функционал С точки зрения базового набора функций, АТС идентичны. Голосовая почты, IVR, маршрутизация, intercom и другие опции доступны для обоих лагерей пользователей. Рассмотрим преимущества, которые интересны для профессионального и более глубокого использования платформ. Начнем, пожалуй, с возможности FreeSWITCH создавать мульти – площадки. Фрисвич нативно (из коробки) умеет сегментировать площадки пользователей, разные домены и суб – домены. Это означает, что пользователи одной площадки не смогут дозвониться до пользователей другой по внутренним номерам. Другими словами, обеспечивается полнофункциональная сегрегация пользователей. Так же, безусловным преимуществом FreeSWITCH стоит отметить возможность кластеризации (объединения нескольких серверов), где каждый хост в кластере будет выполнять свою определенную роль. Итог Подведем итоги. Мы составили таблицу с результатами, чтобы вам было проще ориентироваться: Функция FreeSWITCH Asterisk Малое потребление ресурсов сервера, включая ресурсы процессора и оперативной памяти ✕ ✓ Документация и поддержка: решение проблем, форму, гайды, сильное комьюнити проекта ✕ ✓ Богатый базовый функционал: конференции, видеозвонки, IVR, голосовая почта и так далее ✓ ✓ Возможность реализации функций мульти - площадок (поддержка отдельных телефонных доменов с полной сегрегацией пользователей) ✓ ✕ Внутренние механизмы устойчивости к повышению нагрузки, связанной с повышением количества одновременных вызовов ✓ ✕ Объединение серверов в кластер, с последующим разделением ролей ✓ ✕
img
Название tar архива образовано от сочетания Tape ARchive, так как было разработано для записи последовательных данных на ленточные устройства. Также иногда встречается название tarball. По умолчанию tar архивирует файлы только без сжатия, но с использованием некоторых частей. Мы можем использовать различные методы сжатия, чтобы на выходе получить архив меньшего размера. Утилита tar обычно включается в большинство дистрибутивов Linux по умолчанию, а сам формат поддерживается другими операционными системами, включая Windows и macOS, с помощью различных инструментов и утилит. В этой статье мы рассмотрим некоторые общие примеры использования команды tar и поддерживаемые флаги. 1. Создание tar архива Для создания обычного архива без сжатия достаточно ввести команду ниже: $ tar cvf <tar-file-name> <files-to-archive> Здесь флаги c обозначает создание, v обозначает подробный вывод и f обозначает имя файла архива tar. По соглашению укажите имя файла tar с расширением .tar. Архивируемые файлы могут быть определены с помощью подстановочных знаков или же можно указать один файл или несколько файлов/путей. В качестве примера можно привести три файла в каталоге: Создать архив, содержащий все три файла, можно следующим образом: Также можно указать только конкретные файлы для архивирования, например: 2. Создание сжатого архива (GZ) tar позволяет не только архивировать файлы, но и сжимать их для экономии места. Одним из популярных форматов сжатия является gunzip, обычно представленный расширением .gz после .tar или как tgz. Мы можем использовать флаг z, чтобы указать, что файлы должны быть сжаты с помощью gunzip. Вот пример: Можно заметить, что размер архивных файлов существенно отличается, хотя оба содержат одни и те же три файла. Это связано с использованием сжатия с использованием флага z. 3. Создание сжатого архива (BZ) tar поддерживает несколько других форматов сжатия. Одним из них является bz2 или bzip2, который представлен расширением tar.bz2 или иногда как tbz2. Это может дать вам меньший размер архива, но, в свою очередь, потребляет больше ЦП, так что процесс сжатия/декомпрессии может быть медленнее, чем gz архив. Для создания bz архива используется флаг j: 4. Распаковка всех файлов Архив tar (сжатый или несжатый) можно извлечь с помощью опции x. Ниже приведены примеры, поясняющие его использование: Эта команда также работает для сжатого архива формата gz: И даже для архива со сжатием bz2: 5. Просмотр содержания архива Чтобы перечислить содержимое архива tar, можно использовать флаг t, как показано ниже: 6. Распаковка конкретных файлов Из архива tar, tar.gz или tar.bz2 можно извлечь как все файлы, так и один конкретный файл, указав имя файла: Аналогично, можно указать несколько имен файлов, разделенных пробелом, чтобы извлечь их вместе за один переход. 7. Распаковка с помощью маски Чтобы извлечь один или несколько файлов с помощью шаблона PATTERN, используйте флаг --wildcards: 8. Добавление файлов в архив В существующий несжатый архив можно добавлять новые файлы используя флаг r или --append с новыми именами файлов или шаблоном подстановочных символов (помните, что это работает только с несжатыми TAR-файлами, а не со сжатыми форматами tar.gz или tar.bz2): Можно увидеть, что содержимое списка archive.tar показывает два только что добавленных файла. 9. Удаление файлов из архива Удаление определенных файлов из архива tar возможно с помощью флага --delete, как показано ниже (сравните список tar до и после удаления файлов): Опять же это работает только для несжатых архивов и завершится неудачей для сжатых форматов архива. 10. Создание архива с проверкой При создании несжатых архивных файлов можно проверить содержимое архива, используя флаг W как показано ниже: Этот флаг нельзя использовать с флагами сжатия, хотя можно сжать созданный файл tar позже с помощью gzip или других инструментов. 11. Распаковка архива в папку Если вы хотите извлечь содержимое тарбола в определенную папку вместо текущего каталога, используйте флаг -C с указанием пути к каталогу, как показано ниже: 12. Использование флага –diff Можно использовать флаг --diff или d для поиска любых изменений между файлами в архиве tar и файлами в файловой системе. Вот пример, который запускает diff один раз, когда файл внутри архива и снаружи был один и тот же. Если запустить команду снова после обновления файла, то можно увидеть разницу в выходных данных. 13. Исключение файлов Исключение определенных файлов может быть обязательным при создании архивов tar. Этого можно достичь с помощью флага --exclude. Как можно заметить из приведенных выше выходных данных, можно задать флаг --exclude несколько раз, чтобы указать несколько имен файлов или шаблонов связывая их логическим AND. Следует отметить, что из шести файлов в директории в приведенном выше примере только два файла удовлетворяли условию, которое должно быть включено в archive.tar.gz. 14. Просмотр размера содержимого архива Размер содержимого сжатого архива tar можно получить с помощью следующей команды: Аналогично для архива bz2: 15. Архивация с сохранением разрешений По умолчанию команда tar сохраняет разрешение архивированных файлов и каталогов, хотя можно явно указать его с помощью флага -p или --preserve-permissions, как показано ниже. Заключение tar - полезная утилита в системах Unix/Linux в течение долгого времени и в первую очередь использовалась в задачах архивирования и резервного копирования. С течением времени утилита развивалась и приобретала многие опции. Он может использоваться для простых и сложных задач, если вы знаете, какие функции он предлагает. В этой статье описаны некоторые основные операции, которые можно выполнить с помощью команды tar, и показано, как она может помочь в выполнении повседневных задач системного администрирования. Для получения дополнительных сведений обратитесь воспользуйтесь встроенным руководством Linux с помощью команда man tar или используйте команду tar --help или tar --usage.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59