По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Удобный, простой, да и просто родной - SSH и telnet клиент Putty является неотъемлемым инструментом в работе системного администратора, сетевого инженер, девопса, да и вообще кого угодно из IT. Клиент умеет многое - от простого подключения к CLI сервера, до установления SSH туннеля с помощью путти. Ловите гайд о том, как максимально быстро скачать putty, установить и начать пользоваться. История! В целом, самое название PuTTY не имеет какого - либо устойчивого значения. Однако, исторически, tty - телетайп (англ. teletypewriter), это утилитка для Unix подобных систем, которая выводит имя терминала. Скачать Putty ”Бессмертная” ссылка, с которой берет начало любое SSH/telnet подключение к серверам. Скачать Putty Перейдя по ссылке, вы увидите фразу "You can donwload PuTTY here". Кликайте на этот самый "хир" и скачивайте нужный файл: Установить Putty Загрузив .msi инсталлятор, запускаем его: Нажмите Next: Указываем путь установки. Оставьте по умолчанию, почему нет? А здесь смело нажимайте Install. Начнется установка путти на ваш “комплюктер”. По окончанию установки нажмите Finish: Запустить Putty Находим значок Putty и запускаем ПО. Что нужно сделать чтобы подключиться по SSH к хосту? А вот что: Просто укажите IP - адрес/имя хоста и выберите тип подключения (в примере SSH). Хотите подключиться по Telnet? Нет проблем. Выберите чекбокс с телнетом. Как только укажите нужные параметры, кликайте кнопку Open. Готово! Введите авторизационные данные и наслаждайтесь подключение к командной строке (CLI).
img
В одной из предыдущих статей мы рассматривали межсетевой экран ASA и порядок его первоначальной настройки. Но ничего не стоит на месте и в какой-то момент Cisco купила компанию Sourcefire за баснословные миллиарды "Даларов". Зачем? Ну, во-первых, у Sourcefire был один из лучших в то время на рынке IPS-ов и еще был ряд интересных продуктов, которые Cisco успешно забрала себе в портфолио, например – Advanced Malware Protection, который по сути своей является End Point Detection & Response решением. Зачем? А чтобы можно было вовремя реагировать на угрозы и проводить расследования. Ну да ладно, мы таки FirePower настраивать собрались. Первоначально Firepower выступал в качестве дополнительного модуля (виртуального в случае 5506-5555 и физического в случае 5585) к ASA. Что есть этот модуль? Этот модуль – отдельный и самобытный кусок ПО, доставшийся от Sourcefire. Отсюда следует забавный вывод: для управления этим модулем требовалась отдельная консоль управления (в идеале). А еще, логика обработки пакетов была довольной необычной, но так как экран работал с относительно небольшими скоростями, было принято решение о выносе модуля FirePower в качестве отдельного, уже не относящегося к межсетевому экрану ASA и назвали это чудо FirePower Threat Defense – где в базе используется ASA, а сверху прилеплен NGFW функционал. Новые FirePower-ы имеют огромную производительность – подробнее смотрите в даташитах. Кратко о наших баранах или общие рекомендации Вариации настройки платформы Firepower Threat Defense всего два (а если рассматривать ASA + FirePower сервисы, то аж три, или даже четыре – такой вот коленкор): FirePower Management Center (FMC) – централизованное управления политиками, устройствами и событиями. Обладает автоматизацией, что упрощает настройку. FirePower Device Manager (FDM) – является простым автономным решением для стандартных настроек правил обеспечения безопасности. Мы же рассмотрим самую медленную, но самую богатую (по функционалу) вариацию – средство централизованного управления FMC. Она обладает многопользовательской настройкой, более продвинутым реагированием на угрозы, такой прям мини-SIEM. Также предусмотрено наследование политик (централизованный пуш конфигурации на устройства), что упрощает настройку. Перейдем непосредственно к первоначальной настройке FMC. Настройки будем рассматривать для IPS/IDS (комплексы средств для предотвращения и обнаружения угроз в локальную сеть). Чтобы максимально эффективно использовать IDS/IPS, нужно придерживаться следующих рекомендаций: Систему необходимо разворачивать на входе защищаемой сети или подсети и обычно за межсетевым экраном (нет смысла контролировать трафик, который будет блокирован) — так мы снизим нагрузку. В некоторых случаях датчики устанавливают и внутри сегмента. Перед активацией функции IPS следует некоторое время погонять систему в режиме, не блокирующем (IDS). В дальнейшем потребуется периодически тюнинговать правила. Большинство настроек IPS установлены с расчетом на типичные сети. В определённых случаях они могут оказаться неэффективными, поэтому необходимо обязательно указать IP внутренних подсетей и используемые приложения (порты). Это поможет железке лучше понять, с чем она имеет дело. Но тут есть такая штука как NGIPS – система снимает профиль трафика и может сама под него подстраиваться, включая нужные правила и отключая ненужные. Если IPS-система устанавливается «в разрыв», необходимо контролировать ее работоспособность, иначе выход устройства из строя может запросто парализовать всю сеть. Настройте вы его уже наконец – часть 1 Итак, приступим к настройке платформы Сisco FirePower: Устанавливаем Необходимое ПО: Его можно найти в вашем комплекте поставки, либо можете скачать с официального сайта cisco.com (при наличии у вас сервисного контракта). ПО понадобится следующее: FirePower Management Center (поддерживает ESXi и KVM) и образ для вашей железяки или же образ виртуального Firepower-а, который американцы прозвали NGFWv. Подключаем кабели (согласно указанной ниже схеме и что неприменимо к виртуалке). Console port – консольный порт Management port – для подключения и настройки сети Logical Device Management – для настройки логических устройств (можно настраивать как 1, так и все интерфейсы сразу) Поместите FMC в сеть управления логическими устройствами. Для обновлений FTD и FMC требуется подключение к интернету. Если оборудование не новое (было кем-то использовано), необходимо стереть текущую конфигурацию следующими командами (выделены «жирным»): Firepower-chass Firepower-chassis # connect local-mgmt Firepower-chassis(local-mgmt)# erase configuration Подключитесь к последовательному консольному порту, используя эмулятор терминала. Firepower 9300 включает последовательный консольный кабель RS-232 – RJ-45. Вам может понадобиться использовать кабель последовательного интерфейса USB от стороннего производителя для подключения. Используйте следующие серийные параметры: 9600 baud 8 data bits No parity 1 stop bit При появлении запроса войдите в систему с именем пользователя admin и паролем cisco123. Вводим только то, что выделено «жирным». Когда появится запрос о подтверждении конфигурации, подтверждаете – просто наберите yes. Настройте вы его уже наконец – часть 2 Далее нам необходимо произвести настройки, используя браузер. Обращаю внимание, что не каждый браузер подойдет! Настраивать можно только с управляющего компьютера, IP-адрес которого попадаем в диапазон, который указывали в конфигурации. Заходим в браузер и в поисковую строку (строку ввода URL) вводим следующее: https://адрес_железки Вводим имя пользователя admin и новый пароль для входа в дальнейшем. Осуществляем процедуру входа в систему. Настраиваем NTP соединение. Оно нужно нам для синхронизации времени на всех устройствах. От этого зависит как стабильность, так и сама работа в принципе. Заходим непосредственно в настройки и выбираем параметр использования NTP-сервера. В правом нижнем углу выберите «Add» NTP Server (обязательное поле для заполнения) должен включать IP-адрес или имя host-сервера, Authentication Key – идентификатор от NTP-сервера. Если не знаете этот ключ, можете найти его поискав через поисковик (ntp.keys). Также можно получить его (при условии, что файла ntp.keys нет), прописав команду в консоли управления ntp-keygen -M, затем поискав тот же самый файл, вы найдете его в директории. Нажимаем «Add» и добавляем наш NTP-сервер. Сохраняем изменения. Заходим во вкладку «Current Time», затем «Time Zone» и выбираем свой часовой пояс из списка и после сохраняем настройки. Настройте вы его уже наконец – часть 3. Настройка базового функционала. Настроим интерфейсы. Для этого переходим в саму вкладку «Interfaces», расположенную у рамки окна в черной полосе. Нажимаем «Edit» для интерфейса, который собираемся настроить. Открываем порт для работы галочкой напротив «Enable». В строке «Type» выбираем назначение интерфейса (мы будем передавать данные, поэтому выбираем пункт «data-sharing». Остальные данные заполнять не обязательно. Скажу, что там настраивается Скорость передачи, авто согласование и режим дуплекса соответственно. Лучше оставить данные параметры не настроенными, система сама перестроится для работы. Перейдем непосредственно к настройке IPS (политика обнаружения вторжений). Выбираем пункт Policies > Access Control > Intrusion Далее жмем Сreate Policy (справа кнопка) И в появившемся окне заполняем имя (Name) (обязательный параметр). Если вы не обладаете достаточными знаниями для детальной настройки IPS, воспользуйтесь рекомендуемыми фильтрами. Пункт Base Policy, в нем выбираем Maximum Detection (максимальная защита). Создаем и применяем изменения с помощью кнопки Create and Edit Policy. IPS тут умен, гораздо умнее автора этой статьи. В ходе эксплуатации вы это заметите. А именно, что при использовании максимальной степени защиты (Maximum Detection) программное обеспечение предложит вам исключить правила, которые не нужны и просто на «холостую» тратят ресурсы вашего устройства защиты. Такие рекомендации она делает по результатам статистики. Она хранится в Policies > Access Control > Intrusion > Firepower Recommendations > Generate Recommendations Таким образом, система адаптируется индивидуально для вашей сети. Настроим обнаружение вирусов и зараженных файлов. Но для более адекватной работы сети, рекомендуется создать DNS «ловушку» (следующий пункт), которая покажет, на какое именно устройство пришел вредоносный файл. Если «ловушку» не создавать, то информация о зараженном файле появится в общем хранилище и определить, какое из устройств получило этот вредоносный файл (код), не представится возможным. Переходим по пути: Policies > Access Control > Malware & File. Создаем новую политику, даем ей название. Затем добавляем правило (Add Rule). Заполнить рекомендуется так, как указано на изображении. Это общепринятое правило с максимальной степенью защиты. Нажимаем Save. Теперь настроим DNS «ловушку». Objects > Object Management. Отыскиваем в левой колонке Sinkhole. Далее нажимаем Add Sinkhole Заполняем таблицу. При заполнении обратите внимание на то, что данные, указанные в IPv4/6 не должны быть в вашей сети. После настройки нажимаем Save. Далее переходим в настройку DNS политики (Policies > Access Control > DNS). Выбираем Add DNS Policy, добавляем название и сохраняем. Нас автоматически переводит в это правило. Мы видим, 2 раздела (белый и черный листы. Нам необходимо создать и настроить своё правило. Для этого нажимаем Add DNS Rule и появляется новое окно. Заполняем его как на изображении. В нем мы добавляем все возможные правила, рекомендуемые компанией Cisco. Выбираем все файлы и нажимаем Add to Rule. И непосредственно здесь мы можем применить свою DNS «ловушку». Для этого в пункте Action выбираем Sinkhole. Напротив откроется новый пункт, в котором мы выбираем наш DNS «ловушку». Теперь мы сможем видеть, на какое устройства пришел вредоносный файл (код). На этом первоначальные настройки произведены. Далее производится более детальная настройка исходя из ваших потребностей.
img
В этой серии лекций продолжается рассмотрение распределенных плоскостей управления, добавляя к изучению еще три протокола маршрутизации. Два из них являются протоколами состояния канала, а третий – единственный, широко распространенный протокол вектора пути, Border Gateway Protocol (BGP) v4. В этих лекция мы уделим внимание тому, почему каждый из этих протоколов реализован именно так. Очень легко увлечься и запутаться в изучении мельчайших деталей работы протоколов, но нам гораздо важнее помнить о проблемах, для решения которых эти протоколы были разработаны, и о диапазоне возможных решений. Каждый изучаемый вами протокол будет представлять собой комбинацию умеренно ограниченного набора доступных решений: существует очень мало доступных новых решений. Существуют различные комбинации решений, реализованных иногда уникальными способами для решения конкретных наборов проблем. Изучая эти принципы работы протокола, вы должны попытаться выбрать общие решения, которые они реализуют. Затем отразить эти решения обратно в набор проблем, которые должна решить любая распределенная плоскость управления, чтобы устранить проблемы в реальных сетях. Краткая история OSPF и IS-IS Протокол Intermediate System to Intermediate System (IS-IS или IS to IS) был разработан в 1978 году. Open Shortest Path First (OSPF) изначально задумывался как альтернатива IS-IS, предназначенная специально для взаимодействия с сетями IPv4. В 1989 году первая спецификация OSPF была опубликована Internet Engineering Task Force, а OSPFv2, значительно улучшенная спецификация, была опубликована в 1998 году как RFC2328. OSPF, безусловно, был более широко используемым протоколом, причем ранние реализации IS-IS практически не применялись в реальном мире. Были некоторые аргументы за и против, и многие функции были «позаимствованы» из одного протокола в другой (в обоих направлениях). В 1993 году компания Novell, в то время крупный игрок в мире сетевых технологий, использовала протокол IS-IS как основу для замены собственного протокола маршрутизации Netware. Протокол транспортного уровеня Novell, Internet Packet Exchange (IPX), в то время работал на большом количестве устройств, и возможность использования одного протокола для маршрутизации нескольких транспортных протоколов была решающим преимуществом на сетевом рынке (EIGRP, также может маршрутизировать IPX). Этот протокол замены был основан на IS-IS. Чтобы реализовать новый протокол Novell, многие производители просто переписали свои реализации IS-IS, значительно улучшив их в процессе. Это переписывание сделало IS-IS привлекательным для крупных провайдеров Интернет-услуг, поэтому, когда они отказались от протокола RIP, они часто переходили на IS-IS вместо OSPF. Intermediate System to Intermediate System Protocol В протоколе Intermediate System to Intermediate System (IS-IS) маршрутизатор называется Intermediate System (Промежуточной системой (IS), а хост- End System (Конечной системой (ES). Оригинальный дизайн набора состоял в том, чтобы каждое устройство, а не интерфейс, имело один адрес. Службы и интерфейсы на устройстве будут иметь точку доступа к сетевым службам (Network Service Access Point - NSAP), используемую для направления трафика к определенной службе или интерфейсу. Таким образом, с точки зрения IP, IS-IS изначально был разработан в рамках парадигмы маршрутизации хоста. Промежуточные и конечные системы связываются непосредственно с помощью протокола End System to Intermediate System (ES-IS), позволяющего IS-IS обнаруживать службы, доступные в любой подключенной конечной системе, а также сопоставлять адреса нижних интерфейсов с адресами устройств более высокого уровня. Еще один интересный аспект дизайна IS-IS - он работает на канальном уровне. Разработчикам протокола не имело большого смысла запускать плоскость управления для обеспечения доступности транспортной системы через саму транспортную систему. Маршрутизаторы не будут пересылать пакеты IS-IS, поскольку они параллельны IP в стеке протоколов и передаются по локальным адресам связи. Когда была разработана IS-IS, скорость большинства каналов была очень низкой, поэтому дополнительная инкапсуляция также считалась расточительной. Каналы связи также довольно часто выходили из строя, теряя и искажая пакеты. Следовательно, протокол был разработан, чтобы противостоять ошибкам при передаче и потере пакетов. Адресация OSI Поскольку IS-IS был разработан для другого набора транспортных протоколов, он не использует адреса Internet Protocol (IP) для идентификации устройств. Вместо этого он использует адрес взаимодействия открытых систем (Open Systems Interconnect - OSI) для идентификации как промежуточных, так и конечных систем. Схема адресации OSI несколько сложна, включая идентификаторы для органа, распределяющего адресное пространство, идентификатор домена, состоящий из двух частей, идентификатор области, системный идентификатор и селектор услуг (N-селектор). Многие из этих частей адреса OSI имеют переменную длину, что еще больше затрудняет понимание системы. Однако в мире IP используются только три части этого адресного пространства. Authority Format Identifier (AFI), Initial Domain Identifier (IDI), High-Order Domain Specific Part (HO-DSP) и область, где все обрабатывается как одно поле. Системный идентификатор по-прежнему рассматривается как системный идентификатор. N Selector, или NSAP, обычно игнорируется (хотя есть идентификатор интерфейса, который похож на NSAP, используемый в некоторых конкретных ситуациях). Таким образом, промежуточные системные адреса обычно принимают форму, показанную на рисунке 1. На рисунке 1: Точка разделения между системным идентификатором и остальной частью адреса находится в шестом октете или если отсчитать двенадцать шестнадцатеричных цифр с правой стороны. Все, что находится слева от шестого октета, считается частью адреса области. Если N-селектор включен, это один октет или две шестнадцатеричные цифры справа от идентификатора системы. Например, если для адреса A был включен N-селектор, это могло бы быть 49.0011.2222.0000.0000.000A.00. Если в адрес включен N-селектор, вам нужно пропустить N-селектор при подсчете более шести октетов, чтобы найти начало адреса области. A и B находятся в одном домене flooding рассылки, потому что у них одни и те же цифры от седьмого октета до крайнего левого октета в адресе. C и D находятся в одном flooding domain. A и D представляют разные системы, хотя их системный идентификатор одинаков. Однако такая адресация может сбивать с толку и поэтому не используется в реальных развертываниях IS-IS (по крайней мере, вдумчивыми системными администраторами). Вы посчитать эту схему адресации более сложной, чем IP, даже если вы регулярно работаете с IS-IS в качестве протокола маршрутизации. Однако есть большое преимущество в использовании схемы адресации, отличной от той, которая используется на транспортном уровне в сети. Гораздо проще различать типы устройств в сети и гораздо проще отделить узлы от адресатов, если продумать алгоритм Дейкстры по кратчайшему пути (SPF). Маршаллинг данных в IS-IS IS-IS использует довольно интересный механизм для маршалинга данных для передачи между промежуточными системами. Каждая IS генерирует три вида пакетов: Hello-пакеты Пакеты с порядковыми номерами (PSNP и CSNP) Одиночный пакет состояния канала (Link State Packet - LSP) Единый LSP содержит всю информацию о самой IS, любых доступных промежуточных системах и любых доступных адресатах, подключенных к IS. Этот единственный LSP форматируется в Type Length Vectors (TLV), которые содержат различные биты информации. Некоторые из наиболее распространенных TLV включают следующее: Типы 2 и 22: достижимость к другой промежуточной системе Типы 128, 135 и 235: достижимость до пункта назначения IPv4 Типы 236 и 237: достижимость к адресату IPv6 Существует несколько типов, потому что, IS-IS изначально поддерживал 6-битные метрики (большинство процессоров на момент появления протокола могли хранить только 8 бит за раз, и два бита были «украдены» из размера поля, чтобы нести информацию о том, был ли маршрут внутренним или внешним, а также другую информацию). Со временем, по мере увеличения скорости связи, были введены различные другие метрические длины, включая 24 - и 32-битные метрики, для поддержки широких метрик. Одиночный LSP, несущий всю информацию о доступности IS, IPv4 и IPv6, а также, возможно, теги MPLS и другую информацию, не поместится в один пакет MTU. Для фактической отправки информации по сети IS-IS разбивает LSP на фрагменты. Каждый фрагмент рассматривается как отдельный объект в процессе лавинной рассылки. Если изменяется один фрагмент, лавинной рассылкой по сети распространяется только измененный фрагмент, а не весь LSP. Благодаря этой схеме IS-IS очень эффективен при лавинной рассылке информации о новой топологии и достижимости без использования полосы пропускания, превышающей минимальную требуемую. Обнаружение соседей и топологии Хотя IS-IS изначально был разработан, чтобы узнать о доступности сети через протокол ES-IS, когда IS-IS используется для маршрутизации IP, он «действует так же, как протоколы IP», и узнает о достижимых местах назначения через локальную конфигурацию каждого из них. устройства и путем перераспределения из других протоколов маршрутизации. Следовательно, IS-IS - это проактивный протокол, который изучает и объявляет достижимость без ожидания пакетов, которые будут переданы и переадресованы через сеть. Формирование соседей в IS-IS довольно просто. Рисунок 2 иллюстрирует этот процесс. На рисунке 2: IS A передает приветствие в сторону B. Это приветствие содержит список соседей, от которых получен сигнал, который будет пустым. Настройку времени удержания (hold time) B следует использовать для A, и добавляется к максимальному блоку передачи (MTU) локального интерфейса для канала связи. Пакеты приветствия дополняются только до завершения процесса формирования смежности. Не каждый пакет приветствия дополняется MTU канала. IS B передает приветствие к A. Это приветствие содержит список соседей, от которых получен ответ, который будет включать A. Настройку времени удержания A следует использовать для B. Добавляется к MTU локального интерфейса. Поскольку A находится в списке «слышимых соседей» B, A рассмотрит B и перейдет к следующему этапу формирования соседей. Как только A включил B в список «услышанных соседей» хотя бы в одно приветствие, B рассмотрит A и перейдет к следующему этапу формирования соседа. B отправит полный список всех записей, которые он имеет в своей таблице локальной топологии (B описывает LSP, которые он имеет в своей локальной базе данных). Этот список отправляется в Complete Sequence Number Packet (CSNP). A проверит свою локальную таблицу топологии, сравнив ее с полным списком, отправленным B. Любые записи в таблице топологии (LSP), которых он не имеет, он будет запрашивать у B с использованием Partial Sequence Number Packet (PSNP). Когда B получает PSNP, он устанавливает флаг Send Route Message (SRM) для любой записи в его локальной таблице топологии (LSP), запрошенной A. Позже процесс лавинной рассылки будет проходить по таблице локальной топологии в поисках записей с установленным флагом SRM. Он заполнит эти записи, синхронизируя базы данных в A и B. Примечание. Описанный здесь процесс включает изменения, внесенные в RFC5303, который определяет трехстороннее рукопожатие, и дополнение приветствия, которое было добавлено в большинство реализаций примерно в 2005 году. Установка флага SRM отмечает информацию для лавинной рассылки, но как на самом деле происходит лавинная рассылка? Надежная лавинная рассылка. Для правильной работы алгоритма SPF Дейкстры (или любого другого алгоритма SPF) каждая IS в flooding domain должна совместно использовать синхронизированную базу данных. Любая несогласованность в базе данных между двумя промежуточными системами открывает возможность зацикливания маршрутизации. Как IS-IS гарантирует, что подключенные промежуточные системы имеют синхронизированные базы данных? В этой лекции описывается процесс создания point-to-point каналов. Далее будут описаны модификации, внесенные в процесс flooding domain по каналам с множественным доступом (например, Ethernet). IS-IS полагается на ряд полей в заголовке LSP, чтобы гарантировать, что две промежуточные системы имеют синхронизированные базы данных. Рисунок 3 иллюстрирует эти поля. На рисунке 3: Длина пакета (packet length) содержит общую длину пакета в октетах. Например, если это поле содержит значение 15 , длина пакета составляет 15 октетов. Поле длины пакета составляет 2 октета, поэтому оно может описывать пакет длиной до 65 536 октетов - больше, чем даже самые большие MTU канала. Поле оставшегося времени жизни (remaining lifetime) также составляет два октета и содержит количество секунд, в течение которых этот LSP действителен. Это вынуждает периодически обновлять информацию, передаваемую в LSP, что является важным соображением для старых технологий передачи, где биты могут быть инвертированы, пакеты могут быть усечены или информация, передаваемая по каналу связи, может быть повреждена. Преимущество таймера, который ведет обратный отсчет, а не на увеличение, состоит в том, что каждая IS в сети может определять, как долго ее информация должна оставаться действительной независимо от каждой другой IS. Недостаток в том, что нет четкого способа отключить описанный функционал. Однако 65 536 секунд - это большое время - 1092 минуты, или около 18 часов. Повторная загрузка каждого фрагмента LSP в сети примерно каждые 18 часов создает очень небольшую нагрузку на работу сети. LSP ID описывает сам LSP. Фактически, это поле описывает фрагмент, поскольку оно содержит идентификатор исходной системы, идентификатор псевдоузла (функцию этого идентификатора рассмотрим позже) и номер LSP, или, скорее, номер фрагмента LSP. Информация, содержащаяся в одном фрагменте LSP, рассматривается как «один блок» во всей сети. Отдельный фрагмент LSP никогда не «рефрагментируется» какой-либо другой IS. Это поле обычно составляет 8 октетов. Порядковый номер (Sequence Number) описывает версию этого LSP. Порядковый номер гарантирует, что каждая IS в сети имеет одинаковую информацию в своей локальной копии таблицы топологии. Это также гарантирует, что злоумышленник (или «кривая» реализация) не сможет воспроизвести старую информацию для замены новой. Контрольная сумма (Checksum) гарантирует, что информация, передаваемая во фрагменте LSP, не была изменена во время передачи. Лавинная рассылка описана на рисунке 4. На рисунке 4: А подключен к 2001: db8: 3e8: 100 :: / 64. A создает новый фрагмент, описывающий этот новый достижимый пункт назначения. A устанавливает флаг SRM на этом фрагменте в сторону B. Процесс лавинной рассылки в какой-то момент (обычно это вопрос миллисекунд) проверит таблицу топологии и перезальет все записи с установленным флагом SRM. Как только новая запись будет помещена в свою таблицу топологии, B создаст CSNP, описывающий всю свою базу данных, и отправит его в A. Получив этот CSNP, A удаляет свой флаг SRM в направлении B. B проверяет контрольную сумму и сравнивает полученный фрагмент с существующими записями в своей таблице топологии. Поскольку нет другой записи, соответствующей этой системе и идентификатору фрагмента, он поместит новый фрагмент в свою таблицу локальной топологии. Учитывая, что это новый фрагмент, B инициирует процесс лавинной рассылки по направлению к C. А как насчет удаления информации? Есть три способа удалить информацию из системы IS-IS flooding: Исходящая IS может создать новый фрагмент без соответствующей информации и с более высоким порядковым номером. Если весь фрагмент больше не содержит какой-либо действительной информации, исходящая IS может заполнить фрагмент с оставшимся временем жизни (lifetime) равным 0 секунд. Это приводит к тому, что каждая IS в домене лавинной рассылки повторно загружает фрагмент zero age и удаляет его из рассмотрения для будущих вычислений SPF. Если таймер lifetime во фрагменте истекает в любой IS, фрагмент заполняется лавинной рассылкой с zero age оставшегося времени жизни. Каждая IS, получающая этот фрагмент с zero age, проверяет, что это самая последняя копия фрагмента (на основе порядкового номера), устанавливает оставшееся время жизни для своей локальной копии фрагмента на ноль секунд и повторно загружает фрагмент. Это называется удалением фрагмента из сети. Когда IS отправляет CNSP в ответ на полученный фрагмент, она фактически проверяет всю базу данных, а не только один полученный фрагмент. Каждый раз, когда фрагмент лавинно рассылается по сети, вся база данных проверяется между каждой парой промежуточных систем. Подведение итогов об IS-IS IS-IS можно описать как: Использование лавинной рассылки для синхронизации базы данных в каждой промежуточной системе в flooding domain (протокол состояния канала). Расчет loop-free -путей с использованием алгоритма SPF Дейкстры. Изучение доступных пунктов назначения через конфигурацию и локальную информацию (проактивный протокол). Проверка двусторонней связи при формировании соседей путем переноса списка «замеченных соседей» в своих пакетах приветствия. Удаление информации из домена лавинной рассылки с помощью комбинации порядковых номеров и полей оставшегося времени жизни (lifetime) в каждом фрагменте. Проверка MTU каждой линии связи путем заполнения первоначально обмененных пакетов приветствия. Проверка правильности информации в синхронизированной базе данных с помощью контрольных сумм, периодического перезапуска и описаний базы данных, которыми обмениваются промежуточные системы. IS-IS - это широко распространенный протокол маршрутизации, который доказал свою работоспособность в широком диапазоне сетевых топологий и эксплуатационных требований.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59