По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Компания Cisco сейчас, безусловно, является лидером среди производителей сетевого оборудования, однако немалую часть этого рынка занимает оборудование компаний Huawei и Juniper, в которых команды для CLI отличаются от команд в Cisco IOS. Поэтому, мы собрали в таблицы основные и наиболее часто используемые команды для траблшутинга у Cisco и привели их аналоги в Huawei и Juniper. Поэтому, если вы знакомы с системой IOS, то эта таблица поможет на начальных этапах освоиться в других ОС. Список основных команд, конечно, шире, поэтому если мы забыли упомянуть какие-то команды, напишите их комментариях. Cisco Huawei show display traceroute tracert configure terminal system-view exit quit end return no undo reload reboot erase delete hostname sysname enable super disable super 0 write memory / copy running-config startup-config save show ip route display ip routing-table show flash dir flash: clear reset show logging display logbuffer write terminal / show run display current-configuration show startup display saved-configuration show tech display diagnostic-information show ip nat translation display nat session enable secret super pass cipher snmp-server snmp-agent router ospf ospf router rip rip router bgp bgp show ospf neighbours display ospf peer show interfaces display interface show version display version show history display history-command show access-list display acl all shop ip nat translations display nat session all show mac address-table display mac-address show spanning-tree display stp debug / no debug debugging / undo debugging Получается как-то так. А если сравнить команды Cisco и Juniper? Cisco Juniper show run show configuration show history show cli history show running-config show configuration show ip route show route show ip interface brief show interface terse show controller show interfaces intfc extensive show tech-support request support info reload request system reboot clock set set date show ip bgp show route protocol bgp show ip bgp neighbors show ip bgp neighbor show ip bgp summary show bgp summary clear ip bgp clear bgp neighbor show ip ospf database show ospf database show ip ospf interface show ospf interface show ip ospf neighbor show ospf neighbor show ip traffic show system statistic show logging show log no delete
img
Когда синхронизация менее важна, чем фактическая доставка, трафиком часто можно управлять с помощью метода взвешенной справедливой организации очереди на основе классов (CBWFQ). В CBWFQ участвующие классы трафика обслуживаются в соответствии с назначенной им политикой. Например, трафику, помеченному как AF41, может быть гарантирована минимальная пропускная способность. Для трафика, помеченного как AF21, также может быть гарантирована минимальная пропускная способность, возможно, меньшая, чем объем, предоставленный трафику AF41. Немаркированный трафик может получить любую оставшуюся полосу пропускания. CBWFQ имеет понятие справедливости, когда различные классы трафика могут доставляться по перегруженному каналу. CBWFQ обеспечивает справедливое обслуживание пакетов в очереди в соответствии с политикой QoS. Пакеты будут отправляться всем классам трафика с назначенной им полосой пропускания. Например, предположим, что пропускная способность канала составляет 1024 Кбит / с. Для класса трафика AF41 гарантирован минимум 256 Кбит / с. Для класса AF31 гарантирована скорость минимум 128 Кбит / с. Для класса AF21 гарантирована скорость минимум 128 Кбит / с. Это дает нам соотношение 2: 1: 1 между этими тремя классами. Остальные 512 Кбит / с не распределены, то есть доступны для использования другим трафиком. Включая нераспределенную сумму, полное соотношение составляет 256: 128: 128: 512, что сокращается до 2: 1: 1: 4. Чтобы решить, какой пакет будет отправлен следующим, очередь обслуживается в соответствии с политикой CBWFQ. В этом примере пропускная способность 1024 Кбит / с делится на четыре части с соотношением 2: 1: 1: 4. Для простоты предположим, что перегруженный интерфейс будет обслуживать пакеты в очереди за восемь тактов: Тактовый цикл 1. Будет отправлен пакет AF41. Тактовый цикл 2. Будет отправлен еще один пакет AF41. Тактовый цикл 3. Будет отправлен пакет AF31. Тактовый цикл 4. Будет отправлен пакет AF21. Тактовые циклы 5-8. Пакеты с другими классификациями, а также неклассифицированные пакеты будут отправлены. В этом примере предполагается, что есть пакеты, представляющие каждый из четырех классов, находящихся в буфере, поставленных в очередь для отправки. Однако не всегда все бывает так однозначно. Что происходит, когда нет пакетов из определенного класса трафика для отправки, даже если есть место в гарантированном выделении минимальной полосы пропускания? Гарантированная минимальная пропускная способность не является резервированием. Если класс трафика, которому назначен гарантированный минимум, не требует полного распределения, другие классы трафика могут использовать полосу пропускания. Также нет жестких ограничений гарантированного минимума пропускной способности. Если объем трафика для определенного класса превышает гарантированный минимум и полоса пропускания доступна, трафик для класса будет проходить с большей скоростью. Таким образом, происходящее могло бы выглядеть примерно так: Тактовый цикл 1. Отправляется пакет AF41. Тактовый цикл 2. Нет пакета AF41 для отправки, поэтому вместо него отправляется пакет AF31. Тактовый цикл 3. Отправлен еще один пакет AF31. Тактовый цикл 4. Нет пакета AF21 для отправки, поэтому отправляется неклассифицированный пакет. Тактовые циклы 5-7. Отправляются пакеты с другими классификациями, а также неклассифицированные пакеты. Тактовый цикл 8. Нет более классифицированных или неклассифицированных пакетов для отправки, поэтому отправляется еще один пакет AF31. В результате неиспользованная полоса пропускания делится между классами с избыточным трафиком. Перегрузка CBWFQ не увеличивает пропускную способность перегруженного канала. Скорее, алгоритм предусматривает тщательно контролируемое совместное использование перенапряженного канала, отражающее относительную важность различных классов трафика. В результате совместного использования CBWFQ трафик доставляется через перегруженный канал, но с меньшей скоростью по сравнению с тем же каналом в незагруженное время. Невозможно переоценить различие между "совместным использованием перегруженного канала" и "созданием полосы пропускания из ничего". Распространенное заблуждение о QoS заключается в том, что, несмотря на точки перегрузки на сетевом пути, взаимодействие с пользователем останется идентичным. Это совсем не так. Инструменты QoS, такие как CBWFQ, по большей части предназначены для того, чтобы максимально использовать плохую ситуацию. При выборе того, когда и когда пересылать трафик, QoS также выбирает, какой трафик отбрасывать. Среди потоков, передаваемых по сети, есть "победители" и "проигравшие". LLQ является заметным исключением, поскольку предполагается, что трафик, обслуживаемый LLQ, настолько критичен, что он будет обслуживаться, исключая другой трафик, вплоть до назначенного ограничения полосы пропускания. LLQ стремится сохранить пользовательский опыт. Другие инструменты управления перегрузкой QoS Формирование трафика - это способ изящно ограничить классы трафика определенной скоростью. Например, трафик, помеченный как AF21, может иметь скорость 512 Кбит / с. Формирование изящное. Он допускает номинальные всплески выше определенного предела перед отбрасыванием пакетов. Это позволяет TCP более легко настраиваться на требуемую скорость. Когда пропускная способность сформированного класса трафика отображается на графике, результат показывает нарастание до предельной скорости, а затем постоянную скорость передачи на протяжении всего потока. Формирование трафика чаще всего применяется к классам трафика, заполненным слоновьими потоками. Слоновидные потоки - это долговечные потоки трафика, используемые для максимально быстрого перемещения больших объемов данных между двумя конечными точками. Слоновые потоки могут заполнять узкие места в сети собственным трафиком, подавляя меньшие потоки. Распространенная стратегия QoS состоит в том, чтобы формировать скорость трафика слоновьих потоков, чтобы в узком месте оставалась достаточная пропускная способность для эффективного обслуживания других классов трафика. Применение политик аналогично формированию трафика, но более жестко обращается с избыточным (несоответствующим) трафиком. Вместо того, чтобы допускать небольшой всплеск выше определенного предела пропускной способности, как при формировании перед сбросом, применение политик немедленно отбрасывает избыточный трафик. При столкновении с ограничителем трафика затронутый трафик увеличивается до предела пропускной способности, превышает его и отбрасывается. Такое поведение отбрасывания заставляет TCP заново запускать процесс наращивания мощности. Полученный график выглядит как пилообразный. Применение политик может использоваться для выполнения других задач, таких как перемаркировка несоответствующего трафика на значение DSCP с более низким приоритетом, а не отбрасывание.
img
Всякий раз, когда мы отправляем данные из одного узла в другой в компьютерной сети, данные инкапсулируются на стороне отправителя, а деинкапсулируются на стороне получателя. В этой статье мы узнаем, что такое инкапсуляция. Мы также подробно изучим процесс инкапсуляции и деинкапсуляции в моделях OSI и TCP/IP. Инкапсуляция данных Инкапсуляция данных - это процесс, в котором некоторая дополнительная информация добавляется к элементу данных, чтобы добавить к нему некоторые функции. В нашей сети мы используем модель OSI или TCP/IP, и в этих моделях передача данных происходит через различные уровни. Инкапсуляция данных добавляет к данным информацию протокола, чтобы передача данных могла происходить надлежащим образом. Эта информация может быть добавлена в заголовок (header) или в конец (footer или trailer) данных. Данные инкапсулируются на стороне отправителя, начиная с уровня приложения и заканчивая физическим уровнем. Каждый уровень берет инкапсулированные данные из предыдущего слоя и добавляет некоторую дополнительную информацию для их инкапсуляции и некоторые другие функции с данными. Эти функции могут включать в себя последовательность данных, контроль и обнаружение ошибок, управление потоком, контроль перегрузки, информацию о маршрутизации и так далее. Деинкапсуляция данных Деинкапсуляция данных - это процесс, обратный инкапсуляции данных. Инкапсулированная информация удаляется из полученных данных для получения исходных данных. Этот процесс происходит на стороне получателя. Данные деинкапсулируются на том же уровне на стороне получателя, что и инкапсулированный уровень на стороне отправителя. Добавленная информация заголовка и футера удаляется из данных в этом процессе. На рисунке показано, как футер и хедер добавляются и удаляются из данных в процессе инкапсуляции и деинкапсуляции соответственно. Данные инкапсулируются на каждом уровне на стороне отправителя, а также деинкапсулируются на том же уровне на стороне получателя модели OSI или TCP/IP. Процесс инкапсуляции (на стороне отправителя) Шаг 1. Уровень приложения, представления и сеанса в модели OSI принимает пользовательские данные в виде потоков данных, инкапсулирует их и пересылает данные на транспортный уровень. Тут не обязательно добавится к данным какой-либо хедер или футер - это зависит от приложения. Шаг 2. Транспортный уровень берет поток данных с верхних уровней и разделяет его на несколько частей. Транспортный уровень инкапсулирует данные, добавляя соответствующий заголовок к каждой части. Эти фрагменты данных теперь называются сегментами данных. Заголовок содержит информацию о последовательности, так что сегменты данных могут быть повторно собраны на стороне получателя. Шаг 3. Сетевой уровень берет сегменты данных с транспортного уровня и инкапсулирует их, добавляя дополнительный заголовок к сегменту данных. Этот заголовок данных содержит всю информацию о маршрутизации для правильной доставки данных. Здесь инкапсулированные данные называются пакетом данных или дейтаграммой. Шаг 4: Канальный уровень берет пакет данных или дейтаграмму с сетевого уровня и инкапсулирует ее, добавляя дополнительный заголовок и нижний футер. Заголовок содержит всю информацию о коммутации для правильной доставки данных соответствующим аппаратным компонентам, а футер содержит всю информацию, связанную с обнаружением ошибок и контролем. Здесь инкапсулированные данные называются фреймом данных. Шаг 5: Физический уровень берет кадры данных с уровня канала передачи данных и инкапсулирует их, преобразовывая их в соответствующие сигналы данных или биты, соответствующие физической среде. Процесс деинкапсуляции (на стороне получателя) Шаг 1: Физический уровень принимает инкапсулированные сигналы данных или биты от отправителя и деинкапсулирует их в форме кадра данных, который будет перенаправлен на верхний уровень, то есть на канальный уровень. Шаг 2: Канальный уровень берет кадры данных с физического уровня. Он деинкапсулирует фреймы данных и проверяет заголовок фрейма, скоммутирован ли фрейм данных на правильное оборудование или нет. Если кадр пришел в неправильное место назначения, он отбрасывается, иначе он проверяет информацию в футере. Если есть какая-либо ошибка в данных, запрашивается повторная передача данных, если нет, то они деинкапсулируются, и пакет данных пересылается на верхний уровень. Шаг 3. Сетевой уровень принимает пакет данных или дейтаграмму из канального уровня. Он деинкапсулирует пакеты данных и проверяет заголовок пакета, направлен ли пакет в правильное место назначения или нет. Если пакет направляется в неправильный пункт назначения, пакет отбрасывается, если все ок, то он деинкапсулируется, и сегмент данных пересылается на верхний уровень. Шаг 4: Транспортный уровень берет сегменты данных с сетевого уровня и деинкапсулирует их. Сначала он проверяет заголовок сегмента, а затем повторно собирает сегменты данных для формирования потоков данных, а затем эти потоки данных пересылаются на верхние уровни. Шаг 5: Уровень приложения, представления и сеанса в модели OSI берет инкапсулированные данные с транспортного уровня, деинкапсулирует их, и данные, относящиеся к конкретному приложению, пересылаются в приложения.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59