По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Мы продолжаем знакомить вас с одной из самых распространенных IP-АТС – 3CX Phone System и в сегодняшней статье более детально рассмотрим ее особенности и возможности. По сути 3СХ Phone System – это программное обеспечение, готовый дистрибутив, который остается только установить на сервер и он станет полноценной IP-АТС, поддерживающей все сервисы VoIP. VoIP-система построенная на основе 3CX обычно включает в себя сервер, один или несколько терминалов, работающих по протоколу SIP, шлюз VoIP/PSTN или сервис VoIP провайдера. 3CX сервер выполняет те же функции, что и Proxy-сервер: SIP терминалы, будь то телефонные аппараты или софтфоны, регистрируются на сервере и когда они хотят инициировать вызов, то обращаются к серверу с запросом об установлении соединения. Proxy-сервер содержит базу данных всех телефонов/пользователей, которые прошли регистрацию, а также соответствующие SIP-адреса, по которым устанавливается внутренний вызов или же маршрутизируется внешний от VoIP/PSTN шлюза или провайдера VoIP. 3CX это Windows ориентированная система, то есть дистрибутив сервера может быть установлен только на рабочие станции с операционной системой Microsoft Windows, клиентом же может быть устройство с любой ОС (iOS, Android, Mac, Windows, Linux). Ниже приведены поддерживаемые версии для 3CX Phone System: - Windows 7 Professional (x86 & x64) - Windows 7 Ultimate (x86 & x64) - Windows 7 Enterprise (x86 & x64) - Windows 8 Pro (x86 & x64) - Windows 8 Enterprise (x86 & x64) - Windows 8.1 Pro (x86 & x64) - Windows 8.1 Enterprise (x86 & x64) - Windows 2008 Web Server (x64 only) - Windows 2008 (& R2) Foundation (x64 only) - Windows 2008 (& R2) Standard (x64 only) - Windows 2008 (& R2) Enterprise (x64 only) - Windows 2008 (& R2) Datacenter (x64 only) - Windows 2012 Foundation (max. 15 presence connections on IIS installations) - Windows 2012 Essentials (max. 25 presence connections on IIS installations) - Windows 2012 Standard - Windows 2012 Datacenter - Windows 2012 R2 Essentials (max. 25 presence connections on IIS installations) - Windows 2012 R2 Standard Кроме того 3CX Phone System можно устанавливать на виртуальную машину, что сокращает расходы на содержание аппаратной части. Ниже приведены поддерживаемые версии гипервизоров: - VMware ESX 5.X и выше - Microsoft HyperV 2008 R2 и выше Как в аппаратной так и в виртуальной реализации, производительность системы будет зависеть от следующих факторов: Как много одновременных вызовов будет проводиться? (Это также является основным критерием при выборе лицензии) Как много пользователей будет одновременно подключаться к серверу? Будет ли использоваться запись телефонных разговоров? Будут ли использоваться услуги VoIP провайдера? Осуществляется ли маршрутизация вызовов главным образом по очередям и IVR? 3CX Phone System имеет надежную утилиту, позволяющую сделать полнейший бэкап системы, включая ее конфигурацию и другие важные данные – Backup and Restore. Это необходимо главным образом при обновлении системы или же переносе сервисов на другой сервер или виртуальную машину. Имеется также возможность настройки бэкапирования 3CX по графику. То есть, в определенным момент времени, система будет делать полный бэкап текущего состояния и в случае нештатных ситуаций, запланированного обновления или переноса, можно будет заново развернуть все сервисы системы. 3CX Phone System поддерживает большое количество телефонных аппаратов и может автоматически определить, когда он подключается к серверу. Это существенно сокращает время настройки и введения в эксплуатацию нового оборудования. Список поддерживаемых устройств приведен ниже: Рекомендованные: Fanvil F52/F52P, C58/C58P, C62/C62P Fanvil X3/X3P, X5/X5G Htek UC802, UC803, UC804, UC806, UC840, UC842, UC860, UC862 snom 3 Series - 300, 320, 360, 370 snom 7 Series - 710, 715/D715, 720/D725, 760/D765 snom M300, M700 Dect (M300 Base, M700 Base) Yealink T19P/E2, T20P, T21P/E2, T22P, T26P, T28P Yealink T23P/G, T32G, T38G, T41P, T42G, T46G, T48G Yealink VP530 Руководство по настройке, Yealink DECT W52P Поддерживаемые: - Cisco 7940/ 7941/ 7960 /7961 Руководство по настройке - Cisco SPA 302, 303, 501G, 502G, 504G, 508G, 509G, 525G/G2 - Gigaset N510 IP PRO Руководство по настройке - Panasonic KX-TGP500B01 (DECT) - Polycom SoundPoint 320, 330 Polycom SoundPoint 321, 331, 335, 450, 550, 560, 650, 670 - Polycom SoundStation 5000, 6000, 7000 - snom MeetingPoint, snom PA1 – Public Announcement System, snom 8 Series - 820, 821, 870 Каждый SIP-терминал имеет инструкцию по настройке через веб-интерфейс, или же, может быть автоматически настроенным с помощью удаленного интерфейса 3CX Phone System с помощью функции Provisioning. За каждым SIP-терминалом (пользователем) закрепляется свой добавочный номер (Extension), по которому он будет доступен для звонка во внутренней сети или же из внешней с введением общего номера. Управление Extension’ами осуществляет Администратор системы. Администратор может редактировать правила для каждого Пользователя, разрешать или запрещать пользоваться некоторыми функциями системы, запускать сбор статистической информации с каждого Extension’а и другие: - Записывать все разговоры на данном Extension - Отправлять автоматическое письмо о пропущенном звонке - Скрыть Extension в адресной книге - Отключить Extension - Разрешить/запретить проводить внешние/внутренние вызовы - Разрешить проведение вызовов только после ввода PIN - Запретить регистрацию Extension вне сети И многое другое.
img
Потеря пакетов, джиттер, задержка – все эти страшные слова напрямую зависят от производительности корпоративной сети передачи данных и влияют на работу VoIP (Voice over IP) сервисов, таких как корпоративная IP – АТС и распространение телефонного трафика в целом. В этой статьей мы хотим рассказать про несколько бесплатных инструментов, которые помогут вам проанализировать слабые места в производительности сетевой инфраструктуры, для подготовки инсталляции IP – АТС, или траблшутинге. Wireshark Пожалуй, одним из самых популярных приложений для анализа трафика является Wireshark. Приложение позволит досконально изучить каждый пакет согласно всем семи уровням модели OSI, фильтровать трафик по протоколам, воспроизводить наглядные «SIP Call Flow» для траблшутинга. Как говорится, «маст хэв» :) SIPp Безусловно прекрасная утилита для проведения нагрузочного тестирования. Являясь «Open-Source» решением, приложение генерирует SIP INVITE/BYE с отправкой RTP потоков в единицу времени. SIPp используется для тестирования SIP – прокси, медиа – серверов, шлюзов и IP – АТС. Если вы планируете внедрение IP - АТС и не уверены, что корректно подобрали сервер для ее установки, то элегантным решение будет провести нагрузочное тестирование с помощью указанного ПО. SIPVicious Отличный инструмент в «правильных» руках. Дело в том, что многие хакеры используют данное ПО для взлома VoIP систем (в частности, PBX). SIPVicious состоит из следующих компонентов: svmap - сканнер SIP устройств (именно устройства). Задается IP – диапазон (например, 192.168.1.1 - 192.168.1.254) в рамках которого, «тулза» ищет SIP устройства; svwar - сканирует внутренние номера на корпоративной PBX; svcrack - самая важный инструмент – данное ПО занимается взломом паролей; Слабые пароли в SIP – это очень плохо. А особенно, если слабые пароли составлены только из цифр (без буквенных символов). В таблице ниже предоставлена корреляция длины такого пароля по времени взлома: Длина пароля (в цифрах) Диапазон значений Время на взлом 4 0000-9999 142 секунды 5 00000-99999 23 минуты 48 секунд 6 000000-999999 3 часа 54 минуты 7 0000000-9999999 1 день 14 часов 24 минуты 8 00000000-99999999 16 дней 2 часа 24 минуты Приучайте своих юзеров к паролям длиной не меньше 32 символов с криптостойкостью. Sipper А вот это пункт будет полезен, если вы разрабатываете свое собственное SIP – приложение. SIPr (звучит как Sipper) это один из самых гибких или настраиваемых фреймворков для разработки в мире. Если хотите прикрутить к своему приложению SIP – стек – обратите внимание на это ПО, SIPsak Этот инструмент будет полезен как разработчикам, так и администраторам систем. С помощью него можно проверять такие параметры как: Отправка сообщений SIP OPTIONS; Трассировка; Отправка текстовых файлов (который содержат SIP – запросы); Нагрузочный тест (флудом); Инициация тестовых вызовов; Нам будет интересно узнать, а какими VoIP инструментами пользуетесь Вы?
img
В этой статье вы познакомитесь с основами BGP и узнаете о его различных типах сообщений и состояниях. Все статьи из цикла про BGP: Построение маршрута протоколом BGP Формирование соседства в BGP Оповещения NLRI и политики маршрутизации BGP Масштабируемость протокола BGP Работа протокола BGP с IPv6 Полное руководство по BGP в PDF Ох как мы любим PDF 🙃 Для вашего удобства, весь цикл статей по BGP (Border Gateway Protocol) мы "упаковали" в документ формата PDF. Книга по BGP в PDF | 2.07 MB Видео: Основы BGP за 7 минут Обзор BGP Давайте посмотрим правде в глаза - Border Gateway Protocol невероятно уникален, особенно когда мы сравниваем его с другими протоколами маршрутизации. Самое первое, что делает BGP таким уникальным, - это то, что он наш единственный внешний шлюзовой протокол (EGP), широко используемый сегодня. Мы знаем, что у нас есть Interior Gateway Protocols (IGPs), и похожий на OSPF, работающий внутри автономной системы. Но BGP - это EGP, а это означает, что он (как правило) будет принимать префиксы, которые находятся внутри автономной системы, и отправлять их в другие автономные системы. На рисунке 1 показан пример топологии BGP. Именно поэтому протокол BGP является протоколом, который обеспечивает функционирование сети. Интернет-провайдеры (ISP) могут использовать BGP для перемещения префиксной информации между другими Интернет-провайдерами. Однако уникальные характеристики BGP на этом не заканчиваются. Одна из вещей, которая очень уникальна в протоколе, заключается в том, что он формирует пиринги (*равноправный информационный обмен) точка-точка с другими спикерами BGP, и вы должны создавать эти пиринги вручную. С протоколом пограничного шлюза (BGP) нет такой вещи, как автоматическое формирование соседства с целой кучей устройств на одном сегменте. Для каждого из устройств, с которыми BGP должен пиринговать, он делает это с помощью одного однорангового отношения, которое мы предпочитаем называть пирингом BGP. Еще одно очень уникальное свойство заключается в том, что BGP - это протокол прикладного уровня. По общему признанию, большинство сетевых инженеров поспорили бы, что это протокол сетевого уровня – и они проиграли бы этот спор! Как компонент прикладного уровня, BGP делает что-то блестящее. Он использует протокол управления передачей (TCP) для своих операций. Если мы рассмотрим EIGRP в качестве примера, то создателям пришлось приложить большие усилия, чтобы встроить надежность в сам протокол. Например, спикер EIGRP будет передавать многоадресные передачи, и, если это не сработает, он вернется к одноадресным передачам, чтобы попытаться обеспечить надежность. С помощью Border Gateway Protocol разработчики решили не включать в протокол все эти типы контроля надежности. Они просто полагаются на чудесную надежность коммуникаций TCP. В частности, BGP использует TCP- порт 179. Когда мы думаем о наших протоколах маршрутизации, мы знаем, что будет некоторое значение, которое будет служить метрическим значением для измерения расстояния. Например, в случае OSPF мы знаем, что метрикой является стоимость, а стоимость напрямую зависит от пропускной способности. BGP не работает таким образом. Протокол BGP использует атрибуты, а не только одного показателя. Одним из главных атрибутов протокола BGP называется атрибута AS_PATH. Это список всех автономных систем (AS), которые префикс должен был передать на своем пути, скажем, в вашу автономную систему. AS_PATH - это фактически запись всей информации о пути AS. Путь AS настолько важен для функции BGP, что протокол часто называют протоколом маршрутизации вектора пути. Обратите внимание, что это не протокол вектора расстояния (Distance Vector), а вектор пути (Path Vector). AS_PATH используется не только для определения наилучшего пути к месту назначения (т.е. более короткого пути AS), но и в качестве механизма предотвращения петель. Когда автономная система видит свой собственный номер AS в AS_PATH, она очень обеспокоена тем, что в коммуникациях может быть петля. Что- то еще, что делает BGP невероятно уникальным, - это тот факт, что, когда мы формируем пиринги внутри автономной системы, они называются внутренними пирингами BGP, а правила, которым следуют, являются внутренними правилами BGP (IBGP). Когда мы формируем пиринг между автономными системами, это называется протоколом внешнего пограничного шлюза (EBGP). (Примечание: в некоторых литературных источниках EBGP пишется как eBGP.) Помните, что причина, по которой BGP различает пиринг IBGP и пиринг EBGP, заключается в том, что эксплуатационные характеристики должны изменяться в зависимости от того, как выполняется пиринг. Например, мы заявили, что существует путь AS, который записывает автономные системы, которые передаются. Очевидно, что при пиринге EBGP, когда префикс передается от одного AS к другому AS, отправляющий AS должен поместить свою автономную систему в путь. Но с IBGP, префикс остается в AS, поэтому протокол BGP не обновляет значение AS. Вы можете вернуться к рисунку 1, чтобы увидеть эти различные типы пиринга в действии. Таким образом, правила меняются, когда мы говорим о IBGP против EBGP, чтобы быть последовательным и безошибочными. И уникальные свойства BGP просто не заканчиваются на этом. Типы сообщений BGP, форматы и соседние типы сообщений состояния соседства BGP Многие люди описывают протокол пограничного шлюза (BGP) как чрезвычайно сложный протокол, но я не согласна с этим. Видите ли, установка политик BGP и контроль распространения префиксов внутри BGP-это может быть довольно сложно. Но сам протокол, хотя и уникален, в основном прост в своей работе. В этом части статьи мы рассмотрим типы сообщений BGP. На рисунке 2 показаны различные типы сообщений BGP. Запомните первый шаг. Когда два спикера BGP хотят сформировать пиринг, они будут полагаться на протокол управления передачей (TCP). И, конечно, мы знаем, что будет three-way handshake (трехстороннее рукопожатие) с TCP, чтобы начать этот надежный сеанс связи. Что же происходит дальше? Так это то, что эти устройства будут обмениваться открытыми сообщениями. Открытое сообщение содержит очень важную информацию, основным компонентом которой является номер автономной системы однорангового узла. Это будет определять, является ли это пиринг IBGP или пиринг EBGP. Когда происходит обмен открытыми сообщениями, то спикеры BGP далее начинают обмениваться сообщениями Keepalive. Это, простой механизм, чтобы убедиться, что другой прибор жив, счастлив и здоров, и что пиринг в состоянии up. После этого спикеры BGP получают обновления для совместного использования, называемое сообщением Update. Если в какой-то момент времени что-то пойдет не так, спикеры BGP могут использовать простое сообщение Notification. Данное сообщение прерывает пиринг в результате ошибки, которая может произойти с BGP. Одним из очень интересных типов сообщений BGP является тип сообщения Route Refresh (обновления маршрута). Хотя этот тип сообщений не был включен в исходный стандарт BGP, большинство наших основных сетевых вендоров поддерживают Route Refresh. Route Refresh позволяют соседям обновлять, скажем, информацию о маршруте BGP или даже обновлять вещи после довольно серьезной реконфигурации политики, не разрушая пиринг и не влияя на пиринг каким- либо большим негативным образом. Рисунок 3 показывает эти типы сообщений в действии благодаря захвату Wireshark’ом обмена сообщениями BGP в нашем примере топологии из рисунка 1. Форматы сообщений BGP В этом части статьи мы еще больше узнаем об эксплуатационных характеристиках Border Gateway Protocol, более подробно рассмотрев типы сообщений BGP. Каждый тип сообщения имеет заголовок BGP. Этот заголовок показан на рисунке 4. Вы видите, что заголовок BGP имеет большое поле маркера. Можно подумать, что это чрезвычайно важно. Он имеет размер 16 октетов. Как оказалось, это поле будет заполнено у всех. Это связано с тем, что использование этого поля маркера было прописано в устаревшем стандарте. Первоначальная идея этого поля состояла в том, что его можно было бы использовать для обнаружения таких событий, как потеря синхронизации между двумя одноранговыми узлами, и также считалось, что это будет область, в которой может храниться аутентификационная информация. Почему это поле вообще имеется в BGP? Иногда, в очень редком случае, когда необходимо иметь обратную поддержку с каким-то действительно старым устройством BGP, которое ожидает эту информацию из поля маркера. Важными полями в заголовке, будут длина (Length) (то есть длина всего сообщения) и поля типа (Type). Поле Тип указывает, с каким типом сообщения BGP мы имеем дело. Если, например, в этом поле 1, вы имеете дело с открытым (Open) сообщением BGP. Значение 2 указывает на сообщение об обновлении (Update). А 3 означает уведомление (Notification). Значение 4 будет иметь сообщение Keepalive. 5 указывает на необязательное Route Refresh. То, что следует за информацией заголовка, конечно же, является данными, за одним важным исключением- это сообщение Keepalive. По определению, в сообщении Keepalive нет никаких данных. Теперь я надеюсь вы понимаете, что, когда ваша система хочет сформировать BGP-пиринг с другим устройством, она собирается отправить открытое сообщение. На рисунке 5 показан формат этих сообщений. Когда мы смотрим на формат открытого (Open) сообщения, мы замечаем, что там есть номер версии. Именно так BGP указывает на версию BGP, которую вы используете. Ваша система также отправит свой номер AS в открытом сообщении. Это очень важно для такого поведения IBGP по сравнению с EBGP. Существует значение Hold Time. Что же такое Hold Time? Когда маршрутизатор, с которым вы хотите свериться, получает Open сообщение, он смотрит время удержания (Hold Time), смотрит на свое собственное настроенное Hold Time, а затем использует меньшее из двух значений. Hold Time должно быть либо нулевым, либо не менее трех секунд. Есть поле BGP Identifier. Это Ваш BGP Router ID, и это уникальное значение, которое будет однозначно отличать вашу систему в пирингах BGP. Наконец, у нас есть дополнительные параметры (Optional Parameter), которые можно задать с помощью открытого сообщения. Там есть необязательная длина параметра (Optional Parameter Length), а затем сами параметры, дающие дополнительную гибкость работы с протоколом. Еще одно действительно важное сообщение, которое у нас есть, - это сообщение об обновлении (Update) BGP. На рисунке 6 показана эта структура сообщения. Сообщение об обновлении BGP содержит индикатор длины отозванных маршрутов (Withdrawn Routes Length). Это гарантирует, что сообщение обновления является средством для маршрутов, которые будут удалены из таблицы BGP соседа. Примечание: затем в сообщение об обновлении вставляется список изъятых маршрутов. Сообщение об обновлении содержит поля, которые используются для обмена информацией о префиксах сети с соседями и включают в себя очень важную атрибутивную информацию, связанную с префиксами. Помните, что эти атрибуты позволяют Вам принимать важные решения о том, как BGP будет фактически маршрутизировать информацию в сети. Хорошо известный атрибут, о котором мы уже упоминали, - это путь. Вы помните, что это список автономных систем, которые префикс передал на своем пути по всей инфраструктуре BGP. AS Path будет примером атрибута, который должен быть в сообщении об обновлении, когда он используется для отправки префиксов. Там может быть много атрибутов, которые мы используем, и это является причиной для Total Path Attribute Length в сообщении об обновлении. Сама информация о префиксе сети находится в поле NLRI. Это означает информацию о достижимости сетевого уровня (Network Layer Reachability Information). Вы можете вернуться к рисунку 3 и увидеть эти поля в реальном пакете, а также их содержимое. Создатели BGP сделали гениальную вещь. Они создали протокол для передачи NLRI таким образом, чтобы он был гибким по мере изменения сетей и необходимости передачи новой информации. BGP создан для того, чтобы сразу же запускать для нас такие вещи, как IPv6. Он также может легко переносить префиксы VPN IPv4 внутри чего-то вроде MPLS VPN. На рисунке 7 показаны поля сообщения уведомления (Notification). Самое первое поле - это код ошибки (Error Code). Затем поле Подкод ошибки (Error Subcode). Эти поля дают нам общий тип ошибки, а затем еще больше информации. Например, если в Error Code у нас есть значение 3, а затем в Error Subcode у нас есть значение 3, это указывает на то, что существует сообщение об ошибке обновления. Соседство BGP Точно так же, как мы можем многое узнать о работе BGP, изучая сообщения BGP и их форматы, мы также можем многое узнать о BGP, изучая различные состояния, через которые проходит пиринг BGP. На самом деле, они имеют решающее значение при устранении неполадок. Когда вы проанализируете протокол BGP, вы не удивитесь, узнав, что существует множество встроенных механизмов для обеспечения стабильности. Многие IGP спроектированы так, чтобы быть максимально быстро сходящимися. Это происходит потому, что в момент, когда происходит изменение внутри сети вашей организации, мы хотим sub-second сходимости других устройств, чтобы мы знали об этом изменении. BGP спроектирован по-другому. Таймеры имеют гораздо большую продолжительность, чем мы привыкли бы с нашим IGP, потому что мы хотим стабильности, жертвуя скоростью сходимости. В конце концов, BGP имеет дело с общедоступными таблицами маршрутизации интернета в развертываниях поставщиков услуг. Эти таблицы маршрутизации очень массивны. Нестабильность в этой среде приведет к катастрофе всего публичного Интернета. Когда вы изучите состояние соседства BGP, вы поймете для чего это. Относительно большое число состояний соседства BGP, показанных на рисунке 8, свидетельствует о тщательных усилиях по обеспечению стабильности протокола маршрутизации. Обратите внимание, что есть состояние простоя, когда устройство не инициирует ни одно из других состояний, и есть установленное состояние, когда оно полностью установлено со своим узлом. Что несколько удивительно, так это то, что есть все эти “промежуточные” состояния подключения, активного, открытого подтверждения (OpenConfirm) и активного. Состояние — подключения-это состояние, в котором устройство BGP ожидает завершения TCP- соединения с соседним устройством. В активном состоянии он пытается инициировать TCP - соединение со своим соседом. В состоянии OpenSent, как вы можете догадаться, он отправляет свое открытое сообщение и ждет ответа от своего соседа с его открытым сообщением. В режиме OpenConfirm, спикер BGP на самом деле ждет, Keepalive на основе успешного обмена открытыми сообщениями. Будем надеяться, что устройство BGP получит Keepalive. Если будет ошибка, он получит уведомление. Используя в Cisco CLI специальные команды, можно узнать все о состоянии BGP. Пример 1 показывает использование команды show ip bgp summary для проверки соседнего состояния. TPA1#show ip bgp summary BGP router identifier 10.10.10.1, local AS number 100 BGP table version is 3, main routing table version 3 Neighbor V AS MsgRcvd MsgSent TblVer InQ QutQ Up/down State/PfxRcd 10.10.10.2 4 200 0 0 1 0 0 00:00:00 Idle Обратите внимание на пример 1. Этот пиринг BGP находится в состоянии ожидания (параметр State/PfxRcd в состоянии Idle). Как только произойдет соединение значение IDLE заменится на 1 (Если ATL использует только один префикс с TPA 1).
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59