По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Расскажем о том, как настроить активную запись разговоров на Cisco UCM (CUCM). Если быть кратким, активная запись это гораздо более удобный, гибкий, масштабируемый и производительный способ выполнить запись разговоров на аппаратах Cisco (с поддержкой BiB). Вы спросите гораздо более удобный по сравнению с чем? С пассивным - ответим мы. Пассивный метод записи осуществляется с помощью зеркалирования трафика, с помощью SPAN/RSPAN/ERSPAN. Работает это примерно так: сервер записи забирает метаданные звонка через специальный API (JTAPI в CUCM, это часть CTI), а RTP поток уходит напрямую с телефона через BiB (Built-in Bridge). Активную запись поддерживают такие вендоры как Nice, ZOOM, Verint, ЦРТ и другие. Приступаем к настройке. Почитать подробнее о том, как работает система записи телефонных переговоров можно по ссылке. Настройка Application User на CUCM Логинимся на интерфейс IP PBX. Далее, выбираем User Management → Application User. Нажимаем Add New. Появляется дисплей: Вводим User ID; Вводим пароль пользователя в поле "Password". Введем тот же пароль в поле "Confirm Password"; Выбираем доступные устройства и добавляем в поле Controlled Devices. Так же, нажимаем Add to User Group, чтобы добавить пользователю роли. Данный пользователь должен иметь возможность контролировать пользователей, ТА которых подлежат записи. Назначим следующие роли: Standard CTI Allow Park Monitoring. Standard CTI Allow Call Recording Standard CTI Allow Control of Phones supporting Connected Xfer and conf Standard CTI Allow Control of Phones supporting Rollover Mode Standard CTI Enabled. Нажать Add Selected: Нажать Save (сохранить).На этом, конфигурация пользователя завершена. Перейдем к настройке SIP транка. Настройка SIP транка на CUCM В деталях про настройку SIP транка на CUCM можно читать по ссылке. В появившемся окне нажать Add New. Выбираем Trunk Type = SIP trunk, Device Protocol = SIP Даем имя транку в поле Device Name, пишем описание в поле Description, выбираем Device Pool (набор общих параметров), SIP Trunk Security Profile выбираем Non Secure SIP Trunk Profile, SIP Profile выбираем Standard SIP Profile. Далее, необходимо настроить Route Pattern (маршрут в транк) Настройка Route pattern на CUCM Выбираем незанятый в диалплане номер. Например 1111. В поле Gateway/Route List выбираем сконфигурированный нами транк. Recording Profile Перейдите в Select Device → Device Setting → Recording Profile. Нажмите Add New: Дайте имя профилю; Задайте номер, как в настройке Route Pattern. 1111 в нашем примере; Осталось только настроить запись на линии телефона (включив BiB), назначить Recording Profile на телефон, включить опцию Allow Control of Device from CTI и в опции Recording Option выставьте Automatic Call Recording Enabled.
img
Мы продолжаем изучать один из важнейших протоколов IP телефонии H.323 и в сегодняшней статье рассмотрим возможные сценарии установления соединения, а также углубимся в суть сигнальных сообщений, использующихся в данном протоколе. Итак, что же происходит прежде чем Вы слышите в трубке голос собеседника, когда соединяетесь по H.323? Давайте рассмотрим временную диаграмму установления и разъединения связи между парой терминалов под управлением привратника. Для простоты восприятия, сигнальные сообщения протоколов выделены разными цветами. Как видно из диаграммы на первом этапе установления соединения (SETUP) работают протоколы RAS (Registration, Admission, Status) и H.225.0 . Терминал 1 по протоколу RAS посылает Привратнику сообщение ARQ (Admission Request), которое содержит информацию о вызываемом абоненте и требования к пропускной способности будущей сессии. Привратник отвечает сообщением ACF (Admission Confirmation), содержащее номер порта TCP для будущего сигнального канала. Получив номер порта, Терминал 1 инициирует установление TCP-сессии, и, по протоколу H.225.0, посылает сообщение SETUP Терминалу 2. Стоит напомнить, что SETUP, как и все остальные сообщения протокола H.225.0, является разрешенным для использования в VoIP сообщением протокола Q.931, использующегося в ISDN. SETUP содержит такую информацию как IP адрес, порт и alias, вызываемого абонента. Alias – это адрес по формату напоминающий e-mail адрес, в первой части которого находится уникальный идентификатор терминала, а во второй имя домена, которому он принадлежит, например: alex@merionet.ru или 192.168.1.32@merionet.ru . Терминал 2 отвечает сообщением CALL PROCEEDING, означающее, что все данные получены. Для того, что бы взаимодействовать с Привратником Терминал 2 также проходит процедуру регистрации, обмениваясь сообщениями ARQ и ACF. Наконец, по протоколу H.225 (Q.931 ) Терминал 2 посылает вызывающей стороне сообщение ALERTING. В этот момент вызывающий абонент слышит контроль посылки вызова. Согласование Далее начинается фаза согласования дополнительных параметров с использованием протокола H.245, информация которого передаются внутри сообщений FACILITY протокола H.225.0. Протокол H.245 осуществляет следующие процедуры: Определение ведущего и ведомого сессии (Master/Slave Determination). Данное определение выявляет какой из терминалов будет решать потенциальные разногласия. Например в случае несогласования какого-либо параметра ведущий (Master) может этот параметр отклонить. Согласование функциональных возможностей терминалов (Terminal Capability Set) Терминалы обмениваются списком поддерживаемых аудио и видео кодеков. Ведущий выбирает по какому кодеку будет проходить вызов. Открытие логических каналов (Open Logical Channel) Окончательное согласование всех необходимых параметров будущей RTP – сессии перед ее непосредственным открытием. После того как все параметры согласованы и абонент Терминала 2 принимает вызов, в сторону вызывающего терминала отсылается сообщение CONNECT. На этом фаза установления соединения заканчивается и начинается фаза разговора. Между терминалами устанавливается RTP/RTCP – сессия и начинается обмен речевой информацией. Далее абонент Терминала 2 инициирует завершение соединения, посылкой сообщений CloseLogicalChannel и EndSessionCommand, на что получает соответствующие CLC ACK и ESC ACK от Терминала 1. Далее по протоколу H.225.0 соединение закрывается окончательно сообщением RELEASE COMPLETE. Терминалы, по протоколу RAS, извещают Привратник об освобождении ресурсов сообщениями DRQ Disenagae Request. Привратник подтверждает освобождение полосы пропускания сообщением Disengage Confirmation. H.323 был одним из первых протоколов IP – телефонии, поэтому понимание принципов его работы является крайне важным фактором при изучении более новых и современных протоколов VoIP.
img
BGP (Border Gateway Protocol) - это протокол граничного шлюза, предназначенный для обмена информацией о маршрутизации и доступности между автономными системами (AS) в Интернете. Пока не пугайся - к тому, что такое автономная система мы еще вернемся. Упрощая: BGP - это метод маршрутизации, который позволяет интернету функционировать. Без него вы бы не смогли выполнять поиск в гугле, даже посмотреть эту статью. Можно уверенно сказать, что BGP, наряду с DNS, являются самыми важными для Интернета протоколами. Существует 2 типа BGP - iBGP для маршрутизации внутри сети, где i обозначает Internal и eBGP для внешней (External) маршрутизации, хотя его обычно называют просто - BGP. Немного истории Когда-то во всем интернете было всего лишь несколько сетей, связанных друг с другом статичными маршрутами. То есть админы вручную на роутерах прописывали маршрут до нужной сети - такой маршрут и называется статичным. Но интернет недолго оставался маленьким. Стало появляться все больше и больше сетей, что потребовало динамического метода обмена информацией о маршрутах. Так появился EGP (Exterior Gateway Protocol) - протокол внешнего шлюза. Это был простой протокол маршрутизации, который работал по древовидной иерархической топологии, то есть как веточки у дерева. Это когда чтобы добраться до точки E или F, A должен пройти через B, C и D. Другими словами - при EGP, ни о какой интеллектуальной, как видосы на нашем канале, маршрутизации не могло быть и речи. И когда Интернет стал ещё больше, недостатки EGP стали очевидны всем. Так и появился BGP. Autonomous System В самом начале мы обещали вернуться к автономным системам: так вот Autonomous System или AS это сеть или набор подсетей, которые объединены общей внутренней политикой маршрутизации. Внутри этих подсетей работает свой протокол маршрутизации, например OSPF или EIGRP. Это мы и называем внутренней политикой маршрутизации. Автономными системами управляют отдельные организации, как правило - интернет-провайдеры, различные ВУЗы, коммерческие компании или крупные корпорации типа Google или Facebook. Даже ты сейчас сидишь в какой-то AS. Вот например AS в которой находится наша база знаний wiki.merionet.ru. Каждая AS имеет свой уникальный номер - AS Number (ASN) и диапазон IP адресов, то есть подсеть. А BGP обеспечивает обмен информацией о маршрутах между этими системами. BGP в деталях Так как на BGP возложена великая задача – соединение автономных систем во всем Интернете, то он должен быть очень надежным. Так что в самом начале работы, BGP-маршрутизатор инициирует установление TCP сессии на 179 порт к своему соседу Если TCP-сессия установлена успешно, то BGP-маршрутизаторы начинают обмен сообщениями OPEN в котором сообщают свои номер автономной системы (ASN), идентификатор маршрутизатора, который называется RouterID и Hold timer. Hold timer это время, в течение которого будет поддерживаться TCP-сессия. Если одному роутеру что-то не понравится, например не совпадёт информация о номере AS, то сообщением NOTIFICATION он уведомит об этом своего соседа и сбросит TCP-сессию. Соединение по BGP должно быть абсолютно согласовано администраторами автономных систем, желающих организовать стык. Если, скажем, администратор AS1 запустил процесс BGP на маршрутизаторе R1 указав в качестве соседа R2 и его ASN, а администратор AS2 ничего не настроил, то TCP-сессия не поднимется и системы так и останутся несвязными. Да, все верно, администраторы настраивают BGP вручную. Если же все условия соблюдаются, то маршрутизаторы, с определенным интервалом, начинают слать друг другу сообщения KEEPALIVE, означающие “Я ещё жив и со мной можно работать!” Наконец, маршрутизаторы могут приступать к обмену маршрутной информацией по средствам сообщения UPDATE. Структура данного сообщения делится на две части: Path Attributes (Атрибуты пути) - здесь указывается из какой AS поступил маршрут, его происхождение и следующий маршрутизатор для данного пути. NRLI (Network Layer Reachability Information) - здесь указывается информация о сетях, которые нужно добавить в таблицу маршрутизации, т.е IP-адрес сети и ее маска. Сообщение UPDATE будет передаваться каждый раз, когда один из маршрутизаторов получит информацию о новых сетях, а сообщение KEEPALIVE на протяжении всей TCP-сессии. BGP принимает решения о наилучшем пути на основе текущей сложности маршрута, количестве хопов (то есть точек маршрутизации) и других характеристик пути. BGP анализирует все данные и устанавливает одного из своих соседей в качестве следующей остановки для пересылки пакетов в определенную сеть. Каждый узел управляет таблицей со всеми известными ему маршрутами для каждой сети и передает эту информацию своим соседним автономным системам. Таким образом, BGP позволяет роутерам собирать всю информацию о маршрутизации из соседних автономных систем и далее анонсировать эту информацию соседям. Именно таким образом и работает маршрутизация во всем Интернете. Сбои в работе BGP ни раз приводили к недоступности целых частей Интернета. Помнишь как в октябре 2021 во всем мире прилёг Facebook, а с ним и остальные его сервисы - Instagram, WhatsApp? Это случилось потому, что из-за ошибки инженеров, информация о маршрутах к серверам Facebook, которая рассылается, как ни странно, по протоколу BGP, была удалена, а это вызвало невозможность разрешения доменного имени Facebook по DNS. Дошло до того, что инженерам FB пришлось выпиливать двери в серверную, чтоб всё починить, потому что система пропусков тоже была завязана на их сервисы и не работала!
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59