По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В нашей базе знаний достаточно много статей касаемо установки и настройки FreePBX, поэтому вы наверняка неоднократно натыкались на скриншоты Dashboard в FreePBX – окна, содержащего в себе сводку по всем сервисам, службам и «железным» характеристикам сервера АТС – в сегодняшней статье мы расскажем как установить похожий дэшборд абсолютно на любой сервер – в нашем примере мы будем его ставить на CentOS 6. Установка Для начала обновим все пакеты с помощью командыyum update, а затем установим Apache, PHP и git пакеты: yum -y install httpd git php php-json php-xml php-common Далее включим и запустим сервис httpd командами: systemctl start httpd systemctl enable httpd Следующим шагом необходимо скачать сам дэшборд с помощью git, но для этого необходимо сначала сменить рабочую директорию на /var/www/html с помощью команды cd /var/www/html. После смены директории вводим команду для скачивания - git clone https://github.com/afaqurk/linux-dash.git - в общем и целом, почти всё готово для запуска. Запуск Теперь перезагружаем сервис httpd с помощью команды service httpd restart и пробуем зайти по следующему адресу: http://адрес_вашего_сервера/linux-dash Если всё прошло успешно – у вас должен запуститься веб-интерфейс следующего вида, как на скриншоте ниже: Обратите внимание, что есть 5 вкладок: System Status - информация о загруженности оперативной памяти, CPU и так далее; Basic Info - общая информация о сервере; Network - информация о сетевых интерфейсах; Accounts - информация об аккаунтах пользователей; Apps - описание используемых приложений; Данное приложение находится в процессе постоянной доработки разработчиком, поэтому вы всегда можете обратиться к нему напрямую через GitHub.
img
Полученную от маршрутизаторов «соседей» и других устройств в рамках сети роутер хранит в нескольких таблицах. Существует 3 типа таблиц: Таблица соседей: Хранит информацию от устройств подключенных напрямую. Вся собранная от соседей информация добавляется в таблицу соседей и включает наименования интерфейсов и соответствующих адресов. По умолчанию, “Hello” пакеты отправляются с интерфейсов каждые 5 секунд, чтобы быть уверенным, что сосед работает. Каждый EIGRP маршрутизатор хранит свой собственный экземпляр такой таблицы. Таким образом: Каждый маршрутизатор имеет четкое представление о напрямую подключенных устройствах. Каждый роутер располагает топологией сети в рамках своего ближайшего окружения. Топологическая таблица: Представляет собой набор из таблиц других EIGRP устройств полученных от соседей. Данная таблица представляет из себя список сетей назначения и соответствующих метрик. Выглядит данная таблица вот так: При условии доступность устройств Successor и Feasible Successor они так же присутствуют в таблице для каждой из сетей. Каждый из пунктов маркируется буков A или P, что означает активное или пассивное состояние. Пассивное состояние говорит о том, что роутер знает маршрут к пункту назначения, в то время как активный означает, что топология изменилась и маршрутизатор обновляет данные для данного маршрута. Подчеркнем следующие позиции: Для каждой из сетей назначения маршрутизатор хранит маршрут через Feasible Successor, т.е маршрут, который считается вторым по приоритету после маршрута через Successor. Таблица маршрутизации: Данная таблица представляет собой карту из всех известных маршрутов. Данная таблица строится на основании данных, полученных из топологической таблицы. Можно сказать, что указанные выше таблицы используются для количественной характеристики маршрутов, а таблица маршрутизации дает нам качественную характеристику. Что важно: Только один маршрут через Successor попадает в таблицу маршрутизации и используется для отправки пакетов (в случае доступности). Если маршрут через Successor оказывается недоступным, в таблицу маршрутизации из топологической таблицы копируется маршрут через Feasible Successor и используется в качестве альтернативного. Что такое Successor? Существует два главных типа устройств в сетях EIGRP. Оба устройства гарантируют отсутствие петель в сети: Successor: Устройство, которое обеспечивает самую короткую дистанцию маршрута на пути пакета в сеть назначения. Другими словами, это устройство обеспечивает наилучший маршрут в сеть назначения. Feasible Successor: Это устройство обеспечивает второй по приоритету маршрут в сеть назначения после маршрута Successor – устройства. Типы пакетов EIGRP EIGRP использует 5 типов пакетов: Hello/ACKs пакеты: Это мультикаст пакеты, используемые для обнаружения и отслеживания состояния соседских устройств в сети. Любой Hello пакет должен получить подтверждение, или другими словами ответ – то есть ACK сообщение. Хочется отметить, что ACK пакет является юникастовым. Updates: Надежные юникастовые пакеты, который содержат обновления маршрутной информации для построения/перестроения таблицы маршрутизации. Queries: Мультикаст пакеты, которые отправляет устройство при переходе в активное состояние. Если пакет отправляется в качестве ответа, то он будет юникастовым. Replies: Это надежные юникаст пакеты отправленные в ответ на queries пакеты. Данные пакет говорит получателю о том, что устройство Feasible Successor доступно и не должно переходить в активный режим. Requests: Ненадежные мультикаст или юникаст пакеты, используемые для сбора информации от соседних устройств. В следующей статье мы расскажем о сходимости EIGRP сетей.
img
Облачные технологии очень широкое понятие, которому многие дают различные определения. Для кого-то это как вычислительные сервисы, предоставляемые через Интернет или какую-либо другую сеть. Некоторые определяют это для себя как любую купленную компьютерную услугу, которая находится за вашим маршрутизатором. Обозначим самые характерные признаки облачного сервиса: Централизованная система управления; Доступность по требованию; Частный, публичный или гибридный вид услуги. Примеры облачных услуг - сетевое хранилище данных, социальные сети, различные приложения. Облачная услуга предоставляет доступ к распределенному пулу ресурсов - свободному месту на диске, вычислительным мощностям, транспортному ресурсу в сетях. Таким образом, можно дать следующее определение “облакам”. "Облако" - модель предоставления доступа к услуге через какую-либо сеть к пулу различных ресурсов, таких как сети передачи данных, системы хранения данных, приложения и услуги, которые могут быть гибко распределены между пользователями. Это могут быть услуги с минимальными затратами со стороны лица, предоставляющего услугу. Такая модель являет собой высоко доступную систему, обладающую пятью основными характеристиками, тремя способами предоставления и четырьмя способами реализации. Характеристиками этой модели являются: самообслуживание; широкополосный сетевой доступ; доступ к общему пулу ресурсов; высокая эластичность и возможность точного измерения “используемости” ресурсов. Самообслуживание - возможность пользователями (организациями) запрашивать дополнительные и управлять существующими ресурсами. Широкополосный доступ в сеть позволяет предоставлять услуги через Интернет иили частные сети. Доступ к пулу ресурсов означает разделение мощностей между заказчиками соответственно их требованиям, причем эти ресурсы находятся в удаленном центре обработки данных. Способы предоставления ресурсов: IaaS (Инфраструктура как услуга) - предоставление доступа исключительно к оборудованию и сетевым ресурсам; PaaS (Платформа как услуга) - предоставление доступа к операционной системе, платформе разработки, оборудованию и сетевым ресурсам; SaaS (Приложение как услуга) - предоставление доступа к приложению, вместе с операционной системой, оборудованием и сетевым ресурсам. Как можно заметить, второй и третий способ строятся на способе “Инфраструктура как услуга”. Способы реализации доступа к услугам: приватное облако - доступ к ресурсам находится у одной организации и управляется облачным провайдером или, чаще всего, самой организацией; общедоступное облако - предоставление доступа через Интернет, права на владения находятся у облачного провайдера и доступен всем желающим; общественное облако- ресурсы и доступ делятся между несколькими организациями; гибридное облако- любая возможная комбинация вышеперечисленных. Важнейшим способом построения облака в настоящее время является технология виртуализации. Виртуализацию серверов нельзя приравнивать к облачным вычислениям. Виртуализация – замещение физического оборудования программными абстракциями. Структура облака определяет, как именно виртуальное оборудование расположено, коммутировано и какие функции выполняет. Технология виртуализации не является обязательной для реализации облака, но она вносит возможность очень гибкого масштабирования и распределения ресурсов, что для классической реализации с использованием физического оборудования недостижимо. Кроме того, физическая реализация облака никогда не позволит в реальном времени изменять параметры оборудования, такие как объем свободного пространства на жестком диске, количество оперативной памяти и вычислительной мощности. Одной из важнейших особенностей, которую позволяет виртуальная реализация центра обработки данных (ЦОД) – обеспечение более высокой надежности по сравнению с физическими аналогами. Это достигается благодаря возможности легкого копирования виртуальных машин, их содержимого и переноса в другую среду. Виртуальная машина является основной единицей в виртуальном ЦОДе, и является абстрактным вычислительным устройством, которое может выполнять множество функций – сервера, файлового хранилище, маршрутизатора и т.д.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59