По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Многоуровневый коммутатор будет использовать информацию из таблиц, которые созданы (плоскость управления) для построения аппаратных таблиц. Он будет использовать таблицу маршрутизации для построения FIB (информационной базы пересылки) и таблицу ARP для построения таблицы смежности. Это самый быстрый способ переключения, потому что теперь у нас есть вся информация уровня 2 и 3, необходимая для пересылки аппаратных пакетов IP. Давайте посмотрим на информационную таблицу о пересылке и таблицу смежности на некоторых маршрутизаторах. Будем использовать ту же топологию, что и ранее. 3 роутера и R3 имеет интерфейс loopback0. Будем использовать статические маршруты для полного подключения: R1(config)#ip route 3.3.3.0 255.255.255.0 192.168.23.3 R1(config)#ip route 192.168.23.0 255.255.255.0 192.168.12.2 R2(config)#ip route 3.3.3.0 255.255.255.0 192.168.23.3 R3(config)#ip route 192.168.12.0 255.255.255.0 192.168.23.2 Это статические маршруты, которые мы будем использовать. Теперь посмотрим на таблицу маршрутизации и FIB: show ip cef показывает нам таблицу FIB. Вы можете видеть, что есть довольно много вещей в таблице FIB. Ниже даны разъяснения по некоторым из записей: 0.0.0.0/0 - это для интерфейса null0. Когда мы получим IP-пакеты, соответствующие этому правилу, то оно будет отброшено. 0.0.0.0 /32 - это для всех-нулевых передач. Забудьте об этом, так как мы больше не используем его. 3.3.3.0 /24 - это запись для интерфейса loopback0 R3. Обратите внимание, что следующий переход - это 192.168.12.2, а не 192.168.23.3, как в таблице маршрутизации! 192.168.12.0/24 - это наша непосредственно подключенная сеть. 192.168.12.0/32 зарезервировано для точного сетевого адреса. 192.168.12.1/32 - это IP-адрес на интерфейсе FastEthernet 0/0. 192.168.12.2/32 - это IP-адрес на интерфейсе FastEthernet 0/0 R2. 192.168.12.255/32 - это широковещательный адрес для сети 192.168.12.0/24. 224.0.0.0/4 - соответствует всему многоадресному трафику. Он будет удален, если поддержка многоадресной рассылки отключена глобально. 224.0.0.0/24 - соответствует всему многоадресному трафику, зарезервированному для трафика управления локальной сетью (например, OSPF, EIGRP). 255.255.255.255/32 - широковещательный адрес для подсети. Давайте подробно рассмотрим запись для network 3.3.3.0/24: Номер версии говорит нам, как часто эта запись CEF обновлялась с момента создания таблицы. Мы видим, что для достижения 3.3.3.0/24 нам нужно перейти к 192.168.23.3 и что требуется рекурсивный поиск. Следующий прыжок-192.168.12.2. Он также говорит, что это valid cached adjacency (допустимая кэшированная смежность). Существует целый ряд различных смежностей: Null adjacency: используется для отправки пакетов в интерфейс null0. Drop adjacency: это для пакетов, которые не могут быть переданы из-за ошибок инкапсуляции, маршрутов, которые не могут быть разрешены, или протоколов, которые не поддерживаются. Discard adjacency: это относится к пакетам, которые должны быть отброшены из-за списка доступа или другой политики. Punt adjacency: используется для пакетов, которые отправляются на плоскость управления для обработки. Пакеты, которые не пересылаются CEF, обрабатываются процессором. Если у вас есть много таких пакетов, то вы можете увидеть проблемы с производительностью. Вы можете видеть, сколько пакетов было обработано процессором: Вы можете использовать команду show cef not-cef-switched, чтобы проверить это. Количество пакетов указано по причине: No_adj: смежность не является полной.. No_encap: Информация об ARP является неполной. Unsupp’ted: пакет имеет функции, которые не поддерживаются. Redirect: Перенаправление ICMP. Receive: Это пакеты, предназначенные для IP-адреса, настроенного на интерфейсе уровня 3, пакеты, предназначенные для нашего маршрутизатора. Options: В заголовке пакета есть параметры IP-адреса. Access: ошибка сравнения со списком доступа Frag: ошибка фрагментации пакетов Мы также можем взглянуть на таблицу смежности, в которой хранится информация уровня 2 для каждой записи: Вы можете использовать команду show adjacency summary, чтобы быстро посмотреть, сколько у нас есть смежностей. Смежность - это отображение от уровня 2 до уровня 3 и происходит из таблицы ARP. R1#show adjacency Protocol Interface Address IP FastEthernet0/0 192.168.12.2(9) R1 имеет только один интерфейс, который подключен к R2. Вы можете увидеть запись для ip 192.168.12.2, который является интерфейсом FastEthernet 0/0 R2. Давайте увеличим масштаб этой записи: Мы видим там запись для 192.168.12.2 и там написано: CC011D800000CC001D8000000800 Что означает это число? Это MAC-адреса, которые нам нужны, и Ethertype ... давайте разберем поподробнее его: CC011D800000 - это MAC-адрес интерфейса R2 FastEthernet0 / 0 CC001D800000 - это MAC-адрес интерфейса R1 FastEthernet0/0. 0800 - это Ethertype. 0x800 означает IPv4. Благодаря таблицам FIB и смежности у нас есть вся информация уровня 2 и 3, которая нам требуется для перезаписи и пересылки пакетов. Имейте в виду, что перед фактической пересылкой пакета мы сначала должны переписать информацию заголовка: Исходный MAC-адрес. Конечный MAC-адрес. Контрольная сумма кадров Ethernet. TTL IP-пакета. Контрольная сумма IP-пакетов. Как только это будет сделано, мы сможем переслать пакет. Теперь у вас есть представление о том, что такое CEF и как обрабатываются пакеты. Возникает вопрос, а в чем разница между маршрутизаторами и коммутаторами, поскольку многоуровневый коммутатор может маршрутизировать, а маршрутизатор может выполнять коммутацию. Различие между устройствамистанвится все меньше, но коммутаторы обычно используют только Ethernet. Если вы покупаете Cisco Catalyst 3560 или 3750, то у вас будут только интерфейсы Ethernet. У них есть ASICs, поэтому коммутация кадров может выполняться со скоростью линии связи. С другой стороны, маршрутизаторы имеют другие интерфейсы, такие как последовательные каналы связи, беспроводные сети, и они могут быть модернизированы модулями для VPN, VoIP и т. д. Вы не сможете настроить такие вещи, как NAT/PAT на (маленьком) коммутаторе. Однако грань между ними становится все тоньше Маршрутизаторы используются для маршрутизации, коммутаторы уровня 2-для коммутации, но многоуровневые коммутаторы могут выполнять комбинацию того и другого. Возможно, ваш коммутатор выполняет 80% коммутации и 20% маршрутизации или наоборот. TCAM можно "запрограммировать" на использование оптимальных ресурсов с помощью шаблонов SDM. SDM (Switching Database Manager) используется на коммутаторах Cisco Catalyst для управления использованием памяти TCAM. Например, коммутатор, который используется только для коммутации, не требует никакой памяти для хранения информации о маршрутизации IPv4. С другой стороны, коммутатору, который используется только в качестве маршрутизатора, не потребуется много памяти для хранения MAC-адресов. SDM предлагает ряд шаблонов, которые мы можем использовать на нашем коммутаторе, вот пример коммутатора Cisco Catalyst 3560: Выше вы можете видеть, что текущий шаблон является "desktop default", и вы можете видеть, сколько памяти он резервирует для различных элементов. Вот пример других шаблонов: Вот шаблоны SDM для коммутатора. Мы можем изменить шаблон с помощью команды sdm prefer: Вы должны перезагрузить устройство прежде, чем он вступит в силу: SW1#reload Теперь давайте еще раз проверим шаблон: По сравнению с шаблоном "desktop default" мы теперь имеем двойное хранилище для одноадресных MAC-адресов. Однако для маршрутов IPv4 ничего не зарезервировано. Это хорошая идея, чтобы установить шаблон SDM, для того чтобы соответствовать необходимому использованию вашего коммутатора. Если вы делаете как коммутацию, так и маршрутизацию и не уверены в том, какой шаблон выбрать, то вы можете посмотреть на текущее использование TCAM, вот как это сделать: На данном рисунке многое не отображено, но вы можете видеть, как заполняется TCAM в данный момент. Теперь вам есть что сравнить с шаблонами SDM.
img
Vagrant является инструментом с помощью которого осуществляется создание и управление виртуальными машинами с помощью технологии виртуализации. Благодаря простому в использовании алгоритму и автоматизации процессов, Vagrant сокращает время настройки и оптимизации среды в которой вы будете работать. Погнали. Установка для Windows Установка Vagrant сама по себе очень проста, Вам необходимо скачать клиент с официального сайта для операционной системы, которую вы планируете юзать и запустить процесс установки. Для работы Vagrant также необходимо скачать VirtualBox с официального сайта. VirtualBox гипервизор, осуществляющий процесс виртуализации (опа, тавтология) систем Linux, macOS, Windows и других. Установка софта VirtualBox, как и самого Vagrant проста и не вызовет у вас никаких вопросов и проблем, а как только вы установите две программы, рекомендуется выполнить перезагрузку Вашей системы. Кстати, почитать об установке VirtualBox 6.0 на Linux вы можете в нашей статье После установки откройте командную строку и проверьте доступность Vagrant с помощью следующих строк кода: $ vagrant Usage: vagrant [options] <command> [] -v, --version Print the version and exit. -h, --help Print this help. # ... Первым шагом в настройке виртуальной машины с помощью Vagrant является создание Vagrantfile, который будет содержать все необходимые настройки. Введите следующую команду: mkdir vagrant_demo && cd vagrant_demo vagrant init ubuntu/trusty64 Vagrantfile - это файл Ruby, который описывает, как настроить и подготовить виртуальную машину. Однако, вместо создания виртуальной машины с нуля, софт предлагает вам воспользоваться базовыми образами для использования "шаблонов" виртуальной машины. Эти базовые образы в Vagrant называются "Vagrant box", которые добавляются в Vagrant с помощью инструмента vagrant box add, сохраняющего Vagrant box под определенным именем, предоставляя возможность использовать несколькими средами повторно. Круто, не правда ли? $ vagrant box add hashicorp/precise64 С помощью этой команды вы сможете загрузить готовый Vagrant box с названием "hashicorp/precision64" из каталога Vashgrant Cloud, предоставляемого разработчиками для обмена готовыми образами. Следует отметить и то, что имеется возможность добавления образов из локальных файлов или пользовательского URL. "Боксы" хранятся для каждого пользователя отдельно. Каждый проект Vagrant box создает новую копию "бокса" и никогда не изменяет исходный образ. Это означает, что если у вас есть два проекта, в которых используется один образ Vagrant box hashicorp/precision64, добавление файлов на одной виртуальной машине не повлияет на другую. Когда Vagrant box добавлен в Vagrant, вы можете настроить его для использования в качестве основы. Откройте Vagrantfile и измените содержимое на следующее: Vagrant.configure("2") do |config| config.vm.box = "hashicorp/precise64" end Вы можете указать версию "бокса", указав config.vm.box_version, например: Vagrant.configure("2") do |config| config.vm.box = "hashicorp/precise64" config.vm.box_version = "1.1.0" end Также возможно указать URL-адрес, используя config.vm.box_url: Vagrant.configure("2") do |config| config.vm.box = "hashicorp/precise64" config.vm.box_url = "https://vagrantcloud.com/hashicorp/precise64" end Загружаем первую виртуальную машину Vagrant и вводим команду: $ vagrant up В течении минуты работа этой команды завершится, загрузив для Вас виртуальную машину с Ubuntu. Процесс загрузки будет выглядеть примерно следующим образом: Чтобы проверить его работоспособность производится подключение SSH к виртуальной машине: $ vagrant ssh. Эта команда переведет вас в полноценный SSH-сеанс. Теперь у Вас есть возможность взаимодействия с виртуальной машиной. Сеанс SSH может быть завершен с помощью сочетания клавиш CTRL + D. vagrant@precise64:~$ logout Connection to 127.0.0.1 closed. По окончанию работы с виртуальной машиной следует запустить команду vagrant destroy и Vagrant прекратит использование любых ресурсов, потребляемых виртуальной машиной. Установка на Ubuntu: Устанавливаем Virtualbox, который, кстати, сразу доступен в репозиториях Ubuntu: >sudo apt install virtualbox Совет: Следует отметить, что Vagrant и Virtualbox, доступные в репозиториях Ubuntu могут быть не самой актуальной версии, для установки последних версий этих программ, загрузите их с официальных сайтов разработчиков. Чтобы убедиться, что установка прошла успешно с помощью следующей команды мы можем проверить версию программы Vagrant: vagrant --version Вы должны увидеть примерно следующее: Vagrant 2.0.2 Убедившись, что Vagrant установлен в системе Ubuntu, мы можем создать среду разработки, которая является наиболее распространенным вариантом использования данной программы. Первым шагом является создание каталога, который будет корневым каталогом проекта. И делаем файл Vagrantfile. Создайте каталог проекта и переключитесь на него: mkdir ~/my-first-vagrant-project cd ~/my-first-vagrant-project Следующим шагом является инициализация нового Vagrantfile с помощью команды vagrant init. В этом примере мы у нас CentOS 7. Запустите следующую команду, чтобы инициализировать новый Vagrantfile: vagrant init centos/7 A `Vagrantfile` has been placed in this directory. You are now ready to `vagrant up` your first virtual environment! Please read the comments in the Vagrantfile as well as documentation on `vagrantup.com` for more information on using Vagrant. Запустив vagrant up, мы получаем возможность создать и настроить среду в соответствии с Vagrantfile. vagrant up ==> default: Configuring and enabling network interfaces... default: SSH address: 192.168.121.74:22 default: SSH username: vagrant default: SSH auth method: private key ==> default: Rsyncing folder: /home/linuxize/Vagrant/my-first-vagrant-project/ => /vagrant Как видно из приведенной выше информации, Vagrant также внедряет каталог проекта в /vagrant на виртуальной машине, что позволяет вам работать с файлами вашего проекта на вашем хост-компьютере. Чтобы войти в среду, просто запустите ее с помощью команды: vagrant ssh Остановка работы среды: vagrant halt Следующая строка остановит работу среды, а также очистит всю информацию, которая была необходима для ее работы: vagrant destroy Благодаря нашей статье, вы увидели процесс установки и настройки виртуальной машины на свой компьютер на Windows или Ubuntu 18.04, а также в статье наглядно продемонстрирован процесс создания и настройки виртуальной машины. Профит!
img
Одной из распространенных проблем, с которыми сталкивается администратор IP – АТС Asterisk является проблема с аудио. Вы можете столкнуться как с односторонней слышимостью, так и с полным отсутствием аудио – потока. Как решить проблему с аудио в Asterisk с помощью FreePBX расскажем с статье. Проблемы с NAT В подавляющем большинстве случаев проблемы с односторонней слышимостью вызваны настройками NAT (Network Address Translation). Ниже указаны шаги, выполнение которых поможет вам избавиться от проблем с аудио Динамический DNS Если ваша компания не оплачивает провайдеру услугу статического IP – адреса, то ваш внешний IP будет периодически меняться. Причиной может быть перезагрузка маршрутизатора или, например, истечение срока аренды адреса по протоколу DHCP (DHCP Lease Time). Отличной альтернативной будет динамическая DNS запись. Данная запись позволяет серверу DNS периодически обновлять соответствующий доменному имени IP – адрес. Вне зависимости от смены IP вашим провайдером, маршрутизатор будет всегда доступен по его доменному имени. Такие услуги предоставляет такие сервисы как dyndns, no-ip, hldns и другие. Настройка NAT в FreePBX 13 Когда вы приобрели статический IP – адрес или сделали динамическую запись на DNS сервере, переходим к настройке NAT. Перейдите во вкладку Settings -> Asterisk SIP settings -> Chan SIP Settings На указанном выше примере, выбрана опция Static IP. Здесь, в выделенном красным поле необходимо указать ваш внешний IP – адрес. На примере ниже, указана опция настройки динамического DNS – выбрана кнопка Dynamic IP: Локальные сети Перейдя во вкладку General SIP Settings того же раздела, необходимо настроить внутренние сети. Например, 192.168.13.0/255.255.255.0. Это может быть отдельная сеть, в которой находятся IP – телефоны, или сеть, в которую вынесено все активное сетевое оборудование. Не забывайте по окончанию настроек нажимать Submit и Apply Config Настройка RTP портов Проверьте чтобы на вашем маршрутизаторе не были заблокированы UDP порты 5060 (SIP) и диапазон портов 10000-20000 (RTP). Помимо этого, вы можете сделать проброс этих портов прямо на ваш сервер IP – АТС Asterisk. Перепроверьте, что транспортным протоколом является именно UDP. Проблемы с настройкой кодеков Каждый раз, когда вы совершаете вызов, обе стороны, инициирующая и принимающая вызов согласует телефонный кодек. Например, одна из сторон может инициировать согласование кодека g.711u, который может не поддерживаться другой стороной. Это может являться причиной отсутствия аудио в разговоре. Мы рекомендуем всегда включать поддержку кодеков G.711 u – закона и a – закона. Настроить телефонные кодеки можно следующими способами: Настройка на конкретном телефонном аппарате В настройка внутреннего номера (Extension) в FreePBX Мы рекомендуем не настраивать кодеки индивидуально на телефонном аппарате. В случае возникновения каких – либо проблем, на этапе «траблшутинга» вы можете потратить лишнее время просто забыв о данной настройке На этапе настройки SIP – транка в FreePBX. Разрешенные или запрещенные кодеки определяются опцией allow/disallow Глобальная настройка. В разделе Settings -> Asterisk SIP Settings -> "General SIP Settings" Проблема с воспроизведением аудио файлов Если при звонке на голосовое меню (IVR) вы не слышите ожидаемую аудио – запись, проверьте, корректно ли был импортирован этот файл через модуль System Recordings. Помимо этого проверьте права этого файла. Владельцем этого файла (owner) должен быть пользователь asterisk. В рамках решения проблемы дайте команду amportal chown: [root@localhost ~]# amportal chown Please wait... !!!!amportal is depreciated. Please use fwconsole!!!! forwarding all commands to 'fwconsole' Taking too long? Customize the chown command, See http://wiki.freepbx.org/display/FOP/FreePBX+Chown+Conf Setting Permissions... 37034/37034 [============================] 100% Finished setting permissions
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59