По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Мы продолжим рассмотрение вопроса об устранении неполадок в объявлениях о маршрутах BGP. Все маршрутизаторы будут иметь рабочие соседние узлы BGP. Рекомендуем также почитать первую часть статьи по траблшутингу протокола BGP. Видео: Основы BGP за 7 минут Урок 1 Новый сценарий. R1 и R2 находятся в разных автономных системах. Мы пытаемся объявить сеть 1.1.1.0 / 24 от R1 до R2, но она не отображается на R2. Вот конфигурации: На первый взгляд, здесь все в порядке. Однако R2 не узнал никаких префиксов от R1 Может быть, используется distribute-list. Но нет, это не тот случай. Это означает, что нам придется проверять наши все команды network. Проблема заключается в команде network. Она настраивается по-разному для BGP и нашего IGP. Если мы применяем команду network для BGP, она должна быть полной. В этом случае забыли добавить маску подсети R1(config)#router bgp 1 R1(config-router)#network 1.1.1.0 mask 255.255.255.0 Мы должны убедиться, что ввели правильную маску подсети. Итак, видно, что мы узнали префикс, и R2 устанавливает его в таблицу маршрутизации ... проблема решена! Итог урока: введите правильную маску подсети ... BGP требователен! Урок 2 Давайте перейдем к следующей проблеме. Системный администратор из AS1 хочет объявить summary в AS 2. Системный администратор из AS 2 жалуется, однако, что он ничего не получает..., давайте, выясним, что происходит не так! Вот конфигурация. Вы можете увидеть команду aggregate-address на R1 для сети 172.16.0.0 / 16. Жаль ... префиксы не были получены R2. Здесь мы можем проверить две вещи: Проверьте, не блокирует ли distribute-list префиксы, как это мы сделали в предыдущем занятии. Посмотрите, что R1 имеет в своей таблице маршрутизации (Правило: "не могу объявлять то, чего у меня нет!"). Давайте начнем с таблицы маршрутизации R1. Из предыдущих уроков вы знаете, как выглядит distribute-list. Здесь нет ничего, что выглядело бы даже близко к 172.16.0.0 /16. Если мы хотим объявить summary, мы должны сначала поместить что-то в таблицу маршрутизации R1. Рассмотрим различные варианты: R1(config)#interface loopback 0 R1(config-if)#ip address 172.16.0.1 255.255.255.0 R1(config-if)#exit R1(config)#router bgp 1 R1(config-router)#network 172.16.0.0 mask 255.255.255.0 Это вариант 1. Создам интерфейс loopback0 и настроим IP-адрес, который попадает в диапазон команды aggregate-address. Теперь мы видим summary в таблице маршрутизации R2. По умолчанию он все равно будет объявлять другие префиксы. Если вы не хотите этого, вам нужно использовать команду aggregate-address summaryonly! Второй вариант объявления summary: R1(config)#ip route 172.16.0.0 255.255.0.0 null 0 R1(config)#router bgp 1 R1(config-router)#network 172.16.0.0 mask 255.255.0.0 Сначала мы поместим сеть 172.16.0.0 / 16 в таблицу маршрутизации, создав статический маршрут и указав его на интерфейсе null0. Во-вторых, будем использовать команду network для BGP для объявления этой сети. Итог урока: Вы не можете объявлять то, чего у вас нет. Создайте статический маршрут и укажите его на интерфейсе null0, чтобы создать loopback интерфейс с префиксом, который попадает в диапазон суммарных адресов. Урок 3 Следующая проблема. Вы работаете системным администратором в AS 1, и однажды получаете телефонный звонок от системного администратора AS 2, который интересуется у вас, почему вы публикуете сводку для 1.0.0.0 / 8. Вы понятия не имеете, о чем, он говорит, поэтому решаете проверить свой роутер. Это то, что видит системный администратор на R2. Мы видим, что у нас есть сеть 1.0.0.0 / 8 в таблице BGP на R1. Давайте проверим его таблицу маршрутизации. Сеть 1.1.1.0 / 24 настроена на loopback интерфейс, но она находится в таблице BGP как 1.0.0.0 / 8. Это может означать только одну вещь ... суммирование. Беглый взгляд на выводы команды show ip protocols показывает, что автоматическое суммирование включено. Отключим это: R1(config)#router bgp 1 R1(config-router)#no auto-summary Мы отключим его на R1. Теперь мы видим 1.1.1.0 / 24 на R2 ... проблема решена! Итог урока: если вы видите classful сети в своей таблице BGP, возможно, вы включили автоматическое суммирование. Некоторые из проблем, которые были рассмотрены, можно легко решить, просто посмотрев и/или сравнив результаты команды "show run". И это правда, но имейте в виду, что у вас не всегда есть доступ ко ВСЕМ маршрутизаторам в сети, поэтому, возможно, нет способа сравнить конфигурации. Между устройствами, на которых вы пытаетесь устранить неисправности или которые вызывают проблемы, может быть коммутатор или другой маршрутизатор. Использование соответствующих команд show и debug покажет вам, что именно делает ваш маршрутизатор и что он сообщает другим маршрутизаторам. Урок 4 Та же топология, другая проблема. Персонал из AS 2 жалуются, что они ничего не получают от AS 1. Для усложнения проблемы, конфигурация не будет показана. Для начала, мы видим, что R2 не получает никаких префиксов. Так же можем убедиться, что R1 не имеет каких-либо distribute-lists. Мы видим, что R1 действительно имеет сеть 1.1.1.0 /24 в своей таблице маршрутизации, так почему же он не объявляет ее в R2? Давайте посмотрим, может на R1 есть какие-то особенные настройки для своего соседа R2: Будем использовать команду show ip bgp neighbors, чтобы увидеть подробную информацию о R2. Мы видим, что route-map была применена к R2 и называется "NEIGHBORS". Имейте в виду, что помимо distribute-lists мы можем использовать также route-map для фильтрации BGP. Существует только оператор соответствия для prefix-list "PREFIXES". Вот наш нарушитель спокойствия ... он запрещает сеть 1.1.1.0 / 24! R1(config)#router bgp 1 R1(config-router)#no neighbor 192.168.12.2 route-map NEIGHBORS out Удалим route-map И наконец R2 узнал об этом префиксе ... проблема решена! Итог урока: убедитесь, что нет route-map, блокирующих объявление префиксов. BGP иногда может быть очень медленным, особенно когда вы ждете результатов, когда вы работаете на тестовом или лабораторном оборудовании. "Clear ip bgp *" - это хороший способ ускорить его ... просто не делайте этого на маршрутизаторах в производственной сети) Урок 5 Наконец, третий участник выходит на арену, чтобы продемонстрировать новую проблему. R1-это объявляемая сеть 1.1.1.0 / 24, но R3 не изучает эту сеть. Здесь представлены конфигураций: Соседство настроено, R1 - объявляемая сеть 1.1.1.0 / 24. R3#show ip route bgp Мы можем видеть сеть 1.1.1.0 / 24 в таблице маршрутизации R2, но она не отображается на R3. Технически проблем нет. Если вы внимательно посмотрите на конфигурацию BGP всех трех маршрутизаторов, то увидите, что существует только соседство BGP между R1 и R2 и между R2 и R3. Из-за split horizon IBGP R2 не пересылает сеть 1.1.1.0 / 24 в направлении R3. Чтобы это исправить, нам нужно настроить R1 и R3, чтобы они стали соседями. R1(config)#ip route 192.168.23.3 255.255.255.255 192.168.12.2 R3(config)#ip route 192.168.12.1 255.255.255.255 192.168.23.2 Если мы собираемся настроить соседство BGP между R1 и R3, нам нужно убедиться, что они могут достигать друг друга. Мы можем использовать статическую маршрутизацию или IGP ... чтобы упростить задачу, на этот раз мы будем использовать статический маршрут. R1(config)#router bgp 1 R1(config-router)#neighbor 192.168.23.3 remote-as 1 R3(config)#router bgp 1 R3(config-router)#neighbor 192.168.12.1 remote-as 1 Примените правильные настройки команды neighbor BGP. И R3 имеет доступ к сети 1.1.1.0 / 24! Итог урока: соседство по IBGP должно быть полным циклом! Другим решением было бы использование route-reflector или confederation. Урок 6 Очередная проблема. R3 является объявляемой сетью 3.3.3.0 / 24 через EBGP, а R2 устанавливает ее в таблицу маршрутизации. R1, однако, не имеет этой сети в своей таблице маршрутизации. Вот конфигурации: Вот конфигурации. Для простоты мы используем IP-адреса физического интерфейса для настройки соседей BGP. Мы можем проверить, что сеть 3.3.3.0 / 24 находится в таблице маршрутизации R2. R1#show ip route bgp Однако в таблице маршрутизации R1 ничего нет. Первое, что мы должны проверить - это таблицу BGP. Мы видим, что он находится в таблице BGP, и * указывает, что это допустимый маршрут. Однако мы не видим символа >, который указывает лучший путь. По какой-то причине BGP не может установить эту запись в таблице маршрутизации. Внимательно посмотрите на следующий IP-адрес прыжка (192.168.23.3). Доступен ли этот IP-адрес? R1 понятия не имеет, как достичь 192.168.23.3, поэтому наш следующий прыжок недостижим. Есть два способа, как мы можем справиться с этой проблемой: Используйте статический маршрут или IGP, чтобы сделать этот next hop IP-адрес доступным. Измените next hop IP-адрес. Мы изменим IP-адрес следующего прыжка, так как мы достаточно изучили применение статических маршрутов и IGPs. R2(config)#router bgp 1 R2(config-router)#neighbor 192.168.12.1 next-hop-self Эта команда изменит IP-адрес следующего перехода на IP-адрес R2. Теперь мы видим символ >, который указывает, что этот путь был выбран как лучший. IP-адрес следующего перехода теперь 192.168.12.2. Ура! Теперь он есть в таблице маршрутизации. Мы уже закончили? Если наша цель состояла в том, чтобы она отобразилась в таблице маршрутизации, то мы закончили...однако есть еще одна проблема. Наш пинг не удался. R1 и R2 оба имеют сеть 3.3.3.0 / 24 в своей таблице маршрутизации, поэтому мы знаем, что они знают, куда пересылать IP-пакеты. Давайте взглянем на R3: R3 получит IP-пакет с пунктом назначения 3.3.3.3 и источником 192.168.12.1. Из таблицы маршрутизации видно, что она не знает, куда отправлять IP-пакеты, предназначенные для 192.168.12.1. Исправим это: R2(config)#router bgp 1 R2(config-router)#network 192.168.12.0 mask 255.255.255.0 Мы будем объявлять сеть 192.168.12.0 / 24 на R2. Теперь R3 знает, куда отправлять трафик для 192.168.12.0 / 24. Проблема устранена! Итог урока: убедитесь, что IP-адрес следующего перехода доступен, чтобы маршруты могли быть установлены в таблице маршрутизации, и чтобы все необходимые сети были достижимы.
img
Предположим, у вас есть увесистый дистрибутив софта в формате .iso, гигабайт на 5, например, и вы хотите передать его через сеть партнеру. Вы загружаете его на FTP сервер и даете ссылку партнеру, мол «На, скачивай, дружище!». Ваш партнер скачивает его и работает с ним. Думаете этого достаточно? Нет. Сейчас объясним почему. p> Зачем сверять контрольную сумму? Дело в том, что при загрузке файла из сети файл может прилететь к вам побитым. Да –да, вы не ослышались. Любой .iso это так или иначе, набор блоков данных. И при скачивании, а особенно по нестабильному FTP, он может «крашнуться». И чтобы избежать этого, используется следующий алгоритм передачи файла. Его последовательность такова: Владелец файла считает контрольную сумму рабочего файла (по MD5, например); Загружает файл на публичное хранилище и передает контрольную сумму получателю файла; Получатель файла скачивает файл, считает его контрольную сумму на своей стороне и сверяет ее с оригинальной, которую посчитал владелец файла; Получатель и Владелец кидают смешные стикеры в Telegram друг другу из стикерпака про лягушку Пепе. Как работает контрольная - простым языком Контрольная сумма - результат некой хэш – функции. Запомнили. Далее, что такое хэш – функция? Это функция, которая получает на вход массив данных, «прокручивает» эти данные по определенному алгоритму и дает на выходе битовую строку, длина которой задана заранее. Не вдаваясь в подробности сложных алгоритмов, так это и работает: Массив данных на вход (файл); Магия внутри; Контрольная сумма на выходе! Как рассчитать контрольную сумму? Будем использовать криптографическую функцию MD5. Скачиваем утилиту WinMD5Sum по ссылке: https://sourceforge.net/projects/winmd5sum/. Установите ее и идем дальше. Итак, вот мой заветный дистрибутив. Лежит в папке: Запускаем WinMD5Sum: Тут все предельно просто. Просто в поле File Name выбираем наш дистрибутив и нажимаем кнопку Calculate. Зачастую, как только вы выберите файл в поле File Name через кнопку поиску (три точки), то подсчет хэша начнется без нажатия на кнопку Calculate. Огонь. Копируйте значение из поля MD5 Sum и сохраняйте себе отдельно. Теперь, по легенде, мы берем этот файл и отправляем другу/партнеру/коллеге. Выкладываем файл на FTP, а контрольную сумму передаем ему отдельно – по смс, емаил, в чате. Далее, давайте рассмотрим процесс с точки зрения получателя файла. Как сверить контрольную сумму? Мы получили файл и его контрольную сумму. Как ее проверить? Все так же, как и при расчете контрольной суммы! Сначала считаем контрольную сумму скачанного файла: С одним лишь отличием. Теперь мы берем контрольную сумму которая была посчитана ранее, вставляем ее в поле Compare и нажимаем кнопку Compare: Вот и все. Наша контрольная сумма совпала, а это значит, что файл во время загрузки поврежден не был. Иначе, мы бы получили вот такое значение:
img
Все маршрутизаторы добавляют подключенные маршруты. Затем в большинстве сетей используются протоколы динамической маршрутизации, чтобы каждый маршрутизатор изучал остальные маршруты в объединенной сети. Сети используют статические маршруты - маршруты, добавленные в таблицу маршрутизации посредством прямой настройки - гораздо реже, чем динамическая маршрутизация. Однако статические маршруты иногда могут быть полезны, и они также могут быть полезными инструментами обучения. Статические сетевые маршруты IOS позволяет назначать отдельные статические маршруты с помощью команды глобальной конфигурации ip route. Каждая команда ip route определяет пункт назначения, который может быть сопоставлен, обычно с идентификатором подсети и маской. Команда также перечисляет инструкции пересылки, обычно перечисляя либо исходящий интерфейс, либо IP-адрес маршрутизатора следующего перехода. Затем IOS берет эту информацию и добавляет этот маршрут в таблицу IP-маршрутизации. Статический маршрут считается сетевым, когда пункт назначения, указанный в команде ip route, определяет подсеть или всю сеть класса A, B или C. Напротив, маршрут по умолчанию соответствует всем IP-адресам назначения, а маршрут хоста соответствует одному IP-адресу (то есть адресу одного хоста). В качестве примера сетевого маршрута рассмотрим рисунок 1. На рисунке показаны только детали, относящиеся к статическому сетевому маршруту на R1 для подсети назначения 172.16.2.0/24, которая находится справа. Чтобы создать этот статический сетевой маршрут на R1, R1 настроит идентификатор и маску подсети, а также либо исходящий интерфейс R1 (S0/0/0), либо R2 в качестве IP-адреса маршрутизатора следующего перехода (172.16.4.2). Схема сети устанавливает соединение между двумя маршрутизаторами R1, R2 и двумя хостами 1 и 2. Порт G0/0 .1 R1 подключен к шлейфу слева, который, в свою очередь, подключен к хосту 1, имеющему подсеть 172.16. 1.9. Интерфейс S0/0/0 R1 последовательно подключен к R2 с IP-адресом 172.16.4.2. Интерфейс G0/0.2 на R2 подключен к шлейфу, который, в свою очередь, подключен к хосту 2 с IP-адресом 172.16.2.0.9. Здесь маршрутизатор R1 предназначен для адреса 172.16.2.0/24 в подсети. Пакеты должны перемещаться либо с интерфейса S0/0/0 маршрутизатора R1, либо с маршрутизатора R2 с IP-адресом 172.16.2.0/24. В примере 1 показана конфигурация двух примеров статических маршрутов. В частности, он показывает маршруты на маршрутизаторе R1 на рисунке 2 для двух подсетей в правой части рисунка. При настройке сети маршрутизатор R1 имеет соединение с двумя маршрутизаторами R2 и R3 справа. Интерфейс G0/0 .1 маршрутизатора R1 подключен к заглушке слева и, в свою очередь, подключен к хосту A, имеющему подсеть 172.16.1.9 с маской подсети 172.16.1.0 /24. Справа-интерфейс S0/0/1.1 из R1 с маской подсети 172.16.4.0 / 24 подключается к интерфейсу S0/0/1.2 из R2 с маской подсети 172.16.2.0 / 24 через последовательную линию. Кроме того, интерфейс G0/1/ 0.1 из R1 с маской подсети 172.16.5.0 / 24 подключается к интерфейсу G0/0/0 .3 из R3 с маской подсети 172.16.3.0 / 24 через глобальную сеть. Заглушка подключается к интерфейсу G0/0 .2 из R2, где маска подсети равна 172.16.2.0 / 24 и, в свою очередь, подключена к хосту B, имеющему подсеть 172.16.2.9. Заглушка подключается к интерфейсу G0/0 .3 из R3, где маска подсети равна 172.16.3.0 / 24 и, в свою очередь, подключена к хосту C, имеющему подсеть 172.16.3.9. ip route 172.16.2.0 255.255.255.0 S0/0/0 ip route 172.16.3.0 255.255.255.0 172.16.5.3 Пример 1 Добавление статических маршрутов в R1 В двух примерах команд ip route показаны два разных стиля инструкций пересылки. Первая команда показывает подсеть 172.16.2.0, маска 255.255.255.0, которая находится в локальной сети рядом с маршрутизатором R2. Эта же первая команда перечисляет интерфейс S0 / 0/0 маршрутизатора R1 как исходящий интерфейс. Этот маршрут в основном гласит: Чтобы отправить пакеты в подсеть с маршрутизатора R2, отправьте их через мой собственный локальный интерфейс S0/0/0 (который подключается к R2). Второй маршрут имеет такую же логику, за исключением использования различных инструкций пересылки. Вместо того, чтобы ссылаться на исходящий интерфейс R1, он вместо этого перечисляет IP-адрес соседнего маршрутизатора на WAN-канале в качестве маршрутизатора следующего прыжка. Этот маршрут в основном говорит следующее:чтобы отправить пакеты в подсеть с маршрут. Маршруты, созданные этими двумя командами ip route, на самом деле выглядят немного иначе в таблице IP-маршрутизации по сравнению друг с другом. Оба являются статическими маршрутами. Однако маршрут, который использовал конфигурацию исходящего интерфейса, также отмечается как подключенный маршрут; это всего лишь причуда вывода команды show ip route. В примере 2 эти два маршрута перечислены с помощью статической команды show ip route. Эта команда выводит подробную информацию не только о статических маршрутах, но также приводит некоторые статистические данные обо всех маршрутах IPv4. Например, в этом примере показаны две строки для двух статических маршрутов, настроенных в примере 2, но статистика утверждает, что этот маршрутизатор имеет маршруты для восьми подсетей. IOS динамически добавляет и удаляет эти статические маршруты с течением времени в зависимости от того, работает исходящий интерфейс или нет. Например, в этом случае, если интерфейс R1 S0/0/0 выходит из строя, R1 удаляет статический маршрут к 172.16.2.0/24 из таблицы маршрутизации IPv4. Позже, когда интерфейс снова открывается, IOS добавляет маршрут обратно в таблицу маршрутизации. Обратите внимание, что большинство сайтов используют протокол динамической маршрутизации для изучения всех маршрутов к удаленным подсетям, а не статические маршруты. Однако если протокол динамической маршрутизации не используется, сетевому администратору необходимо настроить статические маршруты для каждой подсети на каждом маршрутизаторе. Например, если бы маршрутизаторы имели только конфигурацию, показанную в примерах до сих пор, ПК А (из рис. 2) не смог бы получать пакеты обратно от ПК В, потому что маршрутизатор R2 не имеет маршрута для подсети ПК А. R2 понадобятся статические маршруты для других подсетей, как и R3. Наконец, обратите внимание, что статические маршруты, которые будут отправлять пакеты через интерфейс Ethernet - LAN или WAN, - должны использовать параметр IP-адреса следующего перехода в команде ip address, как показано в примере 2. Маршрутизаторы ожидают, что их интерфейсы Ethernet смогут достичь любого количества других IP-адресов в подключенной подсети. Ссылка на маршрутизатор следующего перехода определяет конкретное устройство в подключенной подсети, а ссылка на исходящий интерфейс локального маршрутизатора не определяет конкретный соседний маршрутизатор. Статические маршруты хоста Ранее в этой лекции маршрут хоста определялся как маршрут к одному адресу хоста. Для настройки такого статического маршрута команда ip route использует IP-адрес плюс маску 255.255.255.255, чтобы логика сопоставления соответствовала только этому одному адресу. Сетевой администратор может использовать маршруты хоста для направления пакетов, отправленных одному хосту по одному пути, а весь остальной трафик - в подсеть этого хоста по другому пути. Например, вы можете определить эти два статических маршрута для подсети 10.1.1.0 / 24 и Хоста 10.1.1.9 с двумя различными адресами следующего перехода следующим образом: ip route 10.1.1.0 255.255.255.0 10.2.2.2 ip route 10.1.1.9 255.255.255.255 10.9.9.9 Обратите внимание, что эти два маршрута перекрываются: пакет, отправленный в 10.1.1.9, который поступает на маршрутизатор, будет соответствовать обоим маршрутам. Когда это происходит, маршрутизаторы используют наиболее конкретный маршрут (то есть маршрут с наибольшей длиной префикса). Таким образом, пакет, отправленный на 10.1.1.9, будет перенаправлен на маршрутизатор следующего прыжка 10.9.9.9, а пакеты, отправленные в другие пункты назначения в подсети 10.1.1.0/24, будут отправлены на маршрутизатор следующего прыжка 10.2.2.2. Плавающие статические маршруты Затем рассмотрим случай, когда статический маршрут конкурирует с другими статическими маршрутами или маршрутами, изученными протоколом маршрутизации. То есть команда ip route определяет маршрут к подсети, но маршрутизатор также знает другие статические или динамически изученные маршруты для достижения этой же подсети. В этих случаях маршрутизатор должен сначала решить, какой источник маршрутизации имеет лучшее административное расстояние, а чем меньше, тем лучше, а затем использовать маршрут, полученный от лучшего источника. Чтобы увидеть, как это работает, рассмотрим пример, проиллюстрированный на рисунке 3, который показывает другую конструкцию, чем в предыдущих примерах, на этот раз с филиалом с двумя каналами WAN: одним очень быстрым каналом Gigabit Ethernet и одним довольно медленным (но дешево) Т1. В этом проекте сеть Open Shortest Path First Version 2 (OSPFv2) по первичному каналу, изучая маршрут для подсети 172.16.2.0/24. R1 также определяет статический маршрут по резервному каналу к той же самой подсети, поэтому R1 должен выбрать, использовать ли статический маршрут или маршрут, полученный с помощью OSPF. Сетевая диаграмма показывает интерфейс G0 / 0 маршрутизатора R1, который подключен к маршрутизатору R2 через ethernet через облако MPLS. Интерфейс S0 / 0 / 1 R1 соединен с маршрутизатором R3 по последовательной линии. R2 и R3 соединены в ядре облака корпоративной сети, имеющего подсеть 172.16.2.0/24. Маршрутизатор R1 достигает подсети либо по OSPF v1 по основному каналу, либо по статическому маршруту по резервному каналу. По умолчанию IOS отдает предпочтение статическим маршрутам, чем маршрутам, изученным OSPF. По умолчанию IOS предоставляет статическим маршрутам административное расстояние 1, а маршрутам OSPF-административное расстояние 110. Используя эти значения по умолчанию на рисунке 3, R1 будет использовать T1 для достижения подсети 172.16.2.0 / 24 в этом случае, что не является удачным решением. Вместо этого сетевой администратор предпочитает использовать маршруты, изученные OSPF, по гораздо более быстрому основному каналу и использовать статический маршрут по резервному каналу только по мере необходимости, когда основной канал выходит из строя. Чтобы отдавать предпочтение маршрутам OSPF, в конфигурации необходимо изменить настройки административного расстояния и использовать то, что многие сетевики называют плавающим статическим маршрутом. Плавающий статический маршрут перемещается в таблицу IP-маршрутизации или перемещается из нее в зависимости от того, существует ли в настоящее время лучший (меньший) маршрут административного расстояния, полученный протоколом маршрутизации. По сути, маршрутизатор игнорирует статический маршрут в то время, когда известен лучший маршрут протокола маршрутизации. Чтобы реализовать плавающий статический маршрут, вам необходимо использовать параметр в команде ip route, который устанавливает административное расстояние только для этого маршрута, делая значение больше, чем административное расстояние по умолчанию для протокола маршрутизации. Например, команда ip route 172.16.2.0 255.255.255.0 172.16.5.3 130 на маршрутизаторе R1 будет делать именно это - установив административное расстояние статического маршрута равным 130. Пока основной канал остается активным, а OSPF на маршрутизаторе R1 изучает маршрут для 172.16.2.0/24, с административным расстоянием по умолчанию 110, R1 игнорирует статический маршрут. Наконец, обратите внимание, что хотя команда show ip route перечисляет административное расстояние большинства маршрутов в виде первого из двух чисел в двух скобках, команда show ip route subnet явно указывает административное расстояние. В примере 3 показан образец, соответствующий этому последнему примеру. Статические маршруты по умолчанию Когда маршрутизатор пытается маршрутизировать пакет, он может не совпадать с IP-адресом назначения пакета ни с одним маршрутом. Когда это происходит, маршрутизатор обычно просто отбрасывает пакет. Маршрутизаторы могут быть сконфигурированы таким образом, чтобы они использовали либо статически настроенный, либо динамически изучаемый маршрут по умолчанию. Маршрут по умолчанию соответствует всем пакетам, так что, если пакет не соответствует какому-либо другому более конкретному маршруту в таблице маршрутизации, маршрутизатор может, по крайней мере, переслать пакет на основе маршрута по умолчанию. Классический пример, когда компании могут использовать статические маршруты по умолчанию в своих корпоративных сетях TCP / IP, - это когда компания имеет много удаленных узлов, каждый из которых имеет одно относительно медленное WAN-соединение. Каждый удаленный узел имеет только один возможный физический маршрут для отправки пакетов в остальную часть сети. Таким образом, вместо использования протокола маршрутизации, который отправляет сообщения по глобальной сети и использует драгоценную полосу пропускания глобальной сети, каждый удаленный маршрутизатор может использовать маршрут по умолчанию, который направляет весь трафик на центральный сайт, как показано на рисунке 4. Соединение состоит из трех маршрутизаторов: Core, B1 и B1000. Последовательные соединения показаны между маршрутизаторами Core - B1 и Core - B1000. Все эти маршрутизаторы подключены к подсети индивидуально. Маршрутизатор B1 отправляет все нелокальные пакеты в Core через интерфейс S0/0/1. Существует также связь между B1 и B1000. IOS позволяет настроить статический маршрут по умолчанию, используя специальные значения для полей подсети и маски в команде ip route: 0.0.0.0 и 0.0.0.0. Например, команда ip route 0.0.0.0 0.0.0.0 S0/0/1 создает статический маршрут по умолчанию на маршрутизаторе B1-маршрут, который соответствует всем IP-пакетам-и отправляет эти пакеты через интерфейс S0/0/1. В примере 4 показан пример статического маршрута по умолчанию с использованием маршрутизатора R2 с рисунка 1. Ранее на этом рисунке вместе с примером 3 был показан маршрутизатор R1 со статическими маршрутами к двум подсетям в правой части рисунка. Пример 4 завершает настройку статических IP-маршрутов путем настройки R2 в правой части рисунка 1 со статическим маршрутом по умолчанию для маршрутизации пакетов обратно к маршрутизаторам в левой части рисунка. Вывод команды show ip route содержит несколько новых и интересных фактов. Во-первых, он перечисляет маршрут с кодом S, что означает статический, но также со знаком *, что означает, что это кандидат в маршрут по умолчанию. Маршрутизатор может узнать о нескольких маршрутах по умолчанию, и затем маршрутизатор должен выбрать, какой из них использовать; * означает, что это, по крайней мере, кандидат на то, чтобы стать маршрутом по умолчанию. Чуть выше "шлюз последней надежды" относится к выбранному маршруту по умолчанию, который в данном случае является только что настроенным статическим маршрутом с исходящим интерфейсом S0/0/1.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59