По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Машинное обучение - это метод анализа данных, который автоматизирует построение аналитической модели. Это отрасль искусственного интеллекта, основанная на идее, что системы могут обучаться на основе данных, выявлять закономерности и принимать решения с минимальным вмешательством человека. Эволюция машинного обучения Из-за новых вычислительных технологий машинное обучение сегодня отличается от машинного обучения в прошлом. Оно основывается на распознавании образов и теории, что компьютеры могут обучаться, не будучи запрограммированы для выполнения конкретных задач; исследователи, интересующиеся искусственным интеллектом, хотели посмотреть, смогут ли компьютеры обучаться, основываясь на базе данных. Итеративный аспект машинного обучения важен, так как модели, подвергающиеся воздействию новых данных, способны самостоятельно адаптироваться. Они учатся от предыдущих вычислений для получения надежных и воспроизводимых решений и результатов. Хотя многие алгоритмы машинного обучения существуют уже давно, способность автоматически применять сложные математические вычисления к объемным данным - снова и снова, все быстрее и быстрее - это новейшая разработка. Вот несколько широко разрекламированных примеров приложений машинного обучения, с которыми вы можете быть знакомы: Сильно раскрученная, самоуправляемая машина Google. Суть машинного обучения. Онлайн рекомендации, такие, как у Amazon и Netflix. Приложения машинного обучения для повседневной жизни. Знание того, что клиенты говорят о вас в соцсетях. Машинное обучение в сочетании с созданием лингвистических правил. Обнаружение мошенничества. Одно из наиболее очевидных, важных применений в современном мире. Почему машинное обучение важно? Возобновление интереса к машинному обучению обусловлено теми же факторами, которые сделали анализ данных и Байесовский анализ более популярными, чем когда-либо. Растущие объемы и разнообразие доступных данных, вычислительная обработка, которая является более дешевой и мощной; доступное хранилище для хранения данных - все эти аспекты означают, что можно быстро и автоматизировано производить модели, которые могут анализировать более объемные и сложные данные и обеспечивать быстрые и более точные результаты - даже на очень больших объемах. А благодаря созданию точных моделей у организации больше шансов определить выгодные возможности или избежать неизвестных рисков. Что необходимо для создания эффективных систем машинного обучения? Возможности подготовки данных. Алгоритмы - базовый и продвинутый. Автоматизация и итерационные процессы. Масштабируемость. Ансамблевое моделирование. Интересные факты В машинном обучении, цель называется - «ярлык». В статистике, цель называется «зависимой переменной». Переменная в статистике называется – «функция в машинном обучении». Преобразование в статистике называется – «создание функции в машинном обучении». Кто использует машинное обучение? Большинство отраслей промышленности, работающих с большими объемами данных признали ценность технологии машинного обучения. Подбирая идеи из этих данных - часто в режиме реального времени - организации способны более эффективно работать или получить преимущество перед конкурентами. Финансовые услуги Банки и другие предприятия финансовой индустрии используют технологию машинного обучения для двух ключевых целей: для выявления важных данных и предотвращения мошенничества. Они могут определить инвестиционные возможности или помочь инвесторам узнать, когда торговать. Интеллектуальный анализ данных может также идентифицировать клиентов с профилями высокого риска или использовать кибер-наблюдение, чтобы точно определить признаки мошенничества. Правительство Правительственные учреждения, такие как общественная безопасность и коммунальные службы, особенно нуждаются в машинном обучении, поскольку у них есть несколько источников данных, из которых можно получить информацию для полного понимания. Например, анализ датчика данных определяет пути повышения эффективности и экономии средств. Машинное обучение также может помочь обнаружить мошенничество и минимизировать кражу личных данных. Здравоохранение Машинное обучение является быстро развивающимся направлением в отрасли здравоохранения, благодаря появлению переносных устройств и датчиков, которые могут использовать данные для оценки состояния здоровья пациента в режиме реального времени. Эта технология также может помочь медицинским экспертам анализировать данные для выявления тенденций или «красных флажков», которые могут привести к улучшению диагностики и лечения. Розничная торговля Веб-сайты, рекомендующие товары, которые могут вам понравиться на основе предыдущих покупок, используют машинное обучение для анализа вашей истории покупок. Ритейлеры полагаются на машинное обучение для сбора данных, их анализа и использования для персонализации процесса совершения покупок, проведения маркетинговой кампании, оптимизации цен, планирования поставок товаров, а также для понимания потребностей клиентов. Нефть и газ Поиск новых источников энергии. Анализ минералов в почве. Прогнозирование неисправности датчика НПЗ. Оптимизация распределения нефти, чтобы сделать ее более эффективной и рентабельной. Количество вариантов использования машинного обучения для этой отрасли огромно - и продолжает расти. Транспорт Анализ данных для определения закономерностей и тенденций является ключевым для транспортной отрасли, которая полагается на повышение эффективности маршрутов и прогнозирование потенциальных проблем для повышения прибыльности. Анализ данных и аспекты моделирования машинного обучения являются важными инструментами для компаний доставки, общественного транспорта и других транспортных организаций. Каковы популярные методы машинного обучения? Двумя наиболее широко распространенными методами машинного обучения являются контролируемое обучение и неконтролируемое обучение, но существуют и другие методы машинного обучения. Вот обзор самых популярных типов. Контролируемое обучение Алгоритмы контролируемого обучения изучаются с использованием маркированных примеров, таких как ввод, в котором известен желаемый результат. Например, единица оборудования может иметь точки данных, помеченные как «F» (ошибка) или «R» (работа). Алгоритм обучения получает набор входных данных вместе с соответствующими правильными выходными данными, а алгоритм обучается путем сравнения своих фактических выходных данных с правильными выходными данными, чтобы найти ошибки. Затем он соответствующим образом модифицирует модель. С помощью таких методов, как классификация, регрессия, прогнозирование и повышение градиента, контролируемое обучение использует шаблоны для прогнозирования значений метки на дополнительных немаркированных данных. Контролируемое обучение обычно используется в приложениях, где исторические данные предсказывают вероятные будущие события. Например, он может предвидеть, когда транзакции по кредитным картам могут быть мошенническими или какой клиент страхования может подать иск. Полуконтролируемое обучение Полуконтролируемое обучение используется для тех же приложений, что и контролируемое обучение. Но для обучения оно использует как помеченные, так и непомеченные данные, как правило, это небольшой объем помеченных данных с большим количеством немеченых данных (поскольку немеченые данные дешевле и требуют меньше усилий для их получения). Этот тип обучения может использоваться с такими методами, как классификация, регрессия и прогнозирование. Полуконтролируемое обучение полезно, когда стоимость, связанная с маркировкой, слишком высока, чтобы учесть полностью помеченный процесс обучения. Ранние примеры этого включают идентификацию лица человека по веб-камере. Неконтролируемое обучение Неконтролируемое обучение используется в отношении данных, которые не имеют исторических меток. Система не сказала «правильный ответ». Алгоритм должен выяснить, что показывается. Цель состоит в том, чтобы исследовать данные и найти некоторую структуру внутри. Неуправляемое обучение хорошо работает на транзакционных данных. Например, он может идентифицировать сегменты клиентов со схожими признаками, которые затем могут обрабатываться аналогично в маркетинговых кампаниях. Или он может найти основные атрибуты, которые отделяют сегменты клиентов друг от друга. Популярные методы включают самоорганизующиеся таблицы, отображение ближайших соседей, кластеризацию k-средств и разложение по сингулярным числам. Эти алгоритмы также используются для сегментирования текстовых тем, рекомендации элементов и резко отличающихся значений данных. Усиленное обучение Усиленное обучение часто используется для робототехники, игр и навигации. Благодаря обучению с подкреплением алгоритм с помощью проб и ошибок обнаруживает, какие действия приносят наибольшее вознаграждение. Этот тип обучения состоит из трех основных компонентов: агент (учащийся или лицо, принимающее решения), среда (все, с чем взаимодействует агент) и действия (что может делать агент). Цель состоит в том, чтобы агент выбирал действия, которые максимизируют ожидаемое вознаграждение в течение заданного периода времени. Агент достигнет цели намного быстрее, следуя хорошей политике. Таким образом, цель усиленного обучения состоит в том, чтобы изучить лучшую политику. Каковы различия между интеллектуальным анализом данных, машинным обучением и глубоким обучением? Хотя все эти методы имеют одну и ту же цель - извлекать идеи, шаблоны и зависимости, которые можно использовать для принятия решений - у них разные подходы и возможности. Сбор данных (Data Mining) Интеллектуальный анализ данных можно рассматривать как набор множества различных методов для извлечения информации из данных. Он может включать традиционные статистические методы и машинное обучение. Интеллектуальный анализ применяет методы из разных областей для выявления ранее неизвестных шаблонов из данных. Он может включать в себя статистические алгоритмы, машинное обучение, анализ текста, анализ временных рядов и другие области аналитики. Интеллектуальный анализ данных также включает изучение, практику хранения и обработки данных. Машинное обучение Основное отличие машинного обучения заключается в том, что, как и в статистических моделях, цель состоит в том, чтобы понять структуру данных - подогнать теоретические распределения к хорошо понятным данным. Таким образом, под статистическими моделями стоит теория, которая математически доказана, но для этого необходимо, чтобы данные также соответствовали определенным строгим гипотезам. Машинное обучение развивалось на основе способности использовать компьютеры для проверки данных на предмет структуры, даже если у нас нет теории о том, как эта структура выглядит. Испытанием модели машинного обучения является ошибка проверки новых данных, а не теоретическое испытание, которое подтверждает нулевую гипотезу. Поскольку машинное обучение часто использует итеративный подход для изучения данных, обучение может быть легко автоматизировано. Передача через данные проходит, пока не будет найден надежный шаблон. Глубокое изучение (Deep learning) Глубокое обучение сочетает в себе достижения в области вычислительной мощности и специальных типов нейронных сетей для изучения сложных моделей больших объемов данных. В настоящее время методы глубокого обучения подходят для идентификации объектов в изображениях и слов в звуках. В настоящее время исследователи стремятся применить эти успехи в распознавании образов для решения более сложных задач, таких как автоматический перевод языка, медицинские диагнозы и множество других важных социальных и деловых проблем. Как это работает? Чтобы получить максимальную отдачу от машинного обучения, вы должны знать, как сочетать лучшие алгоритмы с подходящими инструментами и процессами. Алгоритмы: графические пользовательские интерфейсы помогают создавать модели машинного обучения и реализовывать итеративный процесс машинного обучения. Алгоритмы машинного обучения включают в себя: Нейронные сети Деревья решений Случайные леса Ассоциации и обнаружение последовательности Градиент повышения и расфасовки Опорные векторные машины Отображение ближайшего соседа K-средства кластеризации Самоорганизующиеся карты Методы локальной оптимизации поиска Максимальное ожидание Многомерные адаптивные регрессионные сплайны Байесовские сети Оценка плотности ядра Анализ главных компонентов Сингулярное разложение Смешанные Гауссовские модели Последовательное сопроводительное построение правил Инструменты и процессы: Как мы уже знаем, это не просто алгоритмы. В конечном счете, секрет получения максимальной отдачи от ваших объемных данных заключается в объединении лучших алгоритмов для поставленной задачи с: Комплексным качеством данных и их управлением GUI для построения моделей и процессов Интерактивным исследованием данных и визуализацией результатов модели Сравнением различных моделей машинного обучения для быстрого определения лучшей Автоматизированной оценкой группы для выявления лучших исполнителей Простым развертыванием модели, что позволяет быстро получать воспроизводимые и надежные результаты Интегрированной комплексной платформой для автоматизации процесса принятия решений
img
Пользователи Linux создают разделы для эффективной организации своих данных. Разделы Linux могут быть удалены так же просто, как и созданы, чтобы переформатировать устройство хранения и освободить место для хранения. Удалить раздел в Linux Для удаления раздела в Linux необходимо выбрать диск, содержащий раздел, и использовать утилиту командной строки fdisk для его удаления. Примечание. Утилита командной строки fdisk - это текстовый манипулятор таблицы разделов. Она используется для разделения и перераспределения устройств хранения. Шаг 1. Составьте список схемы разделов Перед удалением раздела выполните следующую команду, чтобы просмотреть схему разделов. fdisk -l В нашем случае терминал распечатывает информацию о двух дисках: /dev/sda и /dev/sdb. Диск /dev/sda содержит операционную систему, поэтому его разделы удалять не следует. На диске /dev/sdb есть раздел /dev/sdb1, который мы собираемся удалить. Примечание. Число 1 в /dev/sdb1 указывает номер раздела. Запишите номер раздела, который вы собираетесь удалить. Шаг 2: Выберите диск Выберите диск, содержащий раздел, который вы собираетесь удалить. Общие имена дисков в Linux включают: Тип диска Имена дисков Обычно используемые имена дисков IDE /dev/hd[a-h] /dev/hda, /dev/hdb SCSI /dev/sd[a-p] /dev/sda, /dev/sdb ESDI /dev/ed[a-d] /dev/eda XT /dev/xd[ab] /dev/xda Чтобы выбрать диск, выполните следующую команду: sudo fdisk /dev/sdb Шаг 3: удалить разделы Перед удалением раздела сделайте резервную копию своих данных. Все данные автоматически удаляются при удалении раздела. Чтобы удалить раздел, выполните команду d в утилите командной строки fdisk. Раздел выбирается автоматически, если на диске нет других разделов. Если диск содержит несколько разделов, выберите раздел, введя его номер. Терминал распечатает сообщение, подтверждающее, что раздел удален. Примечание. Если вы хотите удалить несколько разделов, повторите этот шаг столько раз, сколько необходимо. Шаг 4: проверьте удаление раздела Перезагрузите таблицу разделов, чтобы убедиться, что раздел был удален. Для этого запустите команду p. Терминал выведет структуру разделов диска, выбранного на шаге 2. Шаг 5. Сохраните изменения и выйдите Запустите команду w, чтобы записать и сохранить изменения, внесенные на диск.
img
В октябре прошлого годы мы опубликовывали статью с обзором Windows Admin Center. На тот момент это была версия 2009 сборки 1.2.2009.21002. На текущий момент в нем обновились некоторые расширения. С появлением предварительной версии Windows Server 2022 Preview, компания Microsoft выпускает новый Windows Admin Center Preview Build 2012 показывая этим, что продукт развивается и управление Windows системами будет происходить с помощью этого инструмента. Скачать его можно с сайта предварительной оценки Windows. Рассмотрим новые возможности версии Admin Center Preview. Загрузка Windows Admin Center Preview 2012 Для получения возможности скачать Admin Center, нужно быть участником программы предварительной оценки Windows. На странице загрузки генерируется ссылка, по которой в течении ограниченного времени вы можете скачать данный продукт. Новые возможности Windows Admin Center Preview 2012 В списке ниже указаны некоторые основные обновления функциональности: Значительное улучшение производительности Обновленная платформа Обновленные компоненты Windows Admin Center Новые возможности графического процессора Добавлены функции безопасности Обновленная работа с кластерами Решения по обновлению Secret feature … Улучшена производительность В этом выпуске Microsoft обновила Windows Admin Center для использования HTTP/2. Графический интерфейс WAC стал более отзывчивым. Переход между компонентами также стал выполняться гораздо быстрее. Обновленная платформа Обновлена платформа, Microsoft отмечает, что в этом выпуске процесс входа в Azure значительно улучшился. Обновленные компоненты Windows Admin Center В этой версии многие компоненты и расширения были улучшены и обновлены. Список компонентов, которые претерпели изменения: Azure File Sync – более надежная работа Files and File sharing – исправлены ошибки при копировании/вставки в панели инструментов Cluster Manager – возможность зарегистрировать кластер в облаке Azure и изменять параметры Storage Migration – обновление пользовательского интерфейса. Добавлены новые функции Storage Migration Service - общее обновление компонента Storage Replica – просмотр статуса репликации. Исправлены общие ошибки Virtual Machines – появился режим изоляции сети при создании виртуальной машины, исправлены ошибки и улучшена производительность Windows Update – исправлены ошибки, связанные с запуском по расписанию Новые возможности графического процессора В этом выпуске WAC 2012 появился инструмент, связанный с графическим процессором. Это возможность назначать графический процессор конкретным виртуальным машинам. Этот новый инструмент находится в предварительной версии и должен быть включен в Insider Preview в Windows Admin Center. Даже если вы установите новый инструмент, вы не увидите расширение. Новые функции безопасности В Windows Admin Center Preview 2012 появилась новая функция безопасности, которая в настоящее время находится в предварительной версии. Добавляется новый раздел о безопасности операционной системы. В нем перечисляется ряд возможностей, связанных с безопасностью. На данный момент расширение обеспечивает защиту от вирусов и других угроз. Stretched Cluster С помощью Stretched Cluster Azure предоставляет решение для аварийного восстановления, которое обеспечивает автоматическое переключение при отказе. Инструмент создания кластера теперь называется GA и предоставляет возможность выбора развертывания на одном сайте или на нескольких сайтах в «растянутом» кластере. Он может автоматически подготавливать сайты на основе сайтов и служб Active Directory. Решения по обновлению Ответ Microsoft на продукт vSphere Lifecycle Manager от компании VMware. Возможность выполнять обновления драйверов и микропрограмм напрямую от производителей оборудования. Это позволит и минимизировать время простоя в результате обновления программного обеспечения. Secret Feature Microsoft добавила в Windows Admin Center Preview 2012 возможность открывать окна инструментов WAC в новом окне. Для этого сначала нужно включить эту функцию в параметрах разработчика, добавив так называемый «Ключ для экспериментов» - msft.sme.shell.popouts. После добавления нажать кнопку «Сохранить и перезагрузить». Затем при наведении указателя мыши на имя компонента вы увидите новую всплывающую кнопку. Добавление расширений Имеется возможность добавить расширения из версии Windows Admin Center «Insider Preview». Чтобы их включить нужно добавить следующий адрес https://aka.ms/wac-insiders-feed в поле «Неопубликованные расширения» и нажать кнопку «Сохранить и перезагрузить». Заключение В этой статье рассмотрели новые функции Windows Admin Center Preview 2012, которые появились в этой предварительной версии. Имеются явные улучшения, обновления, особенно в области общей производительности, обновления функций. Появление нового функционала показывает то, что компания Microsoft планирует улучшать и развивать данный продукт.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59