По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Усаживайтесь на кушетку поудобнее. Зачем, в первую очередь, вы хотите сменить mac – адрес у вашего сервера на базе Linux? Может хотите блочить его на фаерволе, или попробовать совершить «магию» с лицензиями, которые привязаны к маку? В целом, дело ваше. Мы покажем способ, как это сделать. Давайте по шагам. Находим текущий mac – адрес сетевого интерфейса Сначала давайте посмотрим на текущий mac вашего сервера. Сделать это можно командой: ip link show Вывод сервера будет примерно таким. Он будет содержать параметры (mac - адреса всех ваших интерфейсов): 1: lo: mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1000 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 2: eno1: mtu 1500 qdisc fq_codel state DOWN mode DEFAULT group default qlen 1000 link/ether 45:c6:f6:a7:12:30 brd ff:ff:ff:ff:ff:ff 3: enp0s12e2: mtu 1500 qdisc noqueue state UP mode DORMANT group default qlen 1000 link/ether 33:23:f8:8b:d7:65 brd ff:ff:ff:ff:ff:ff Как мы видим, например, у интерфейса enp0s12e2 текущий mac – адрес это 33:23:f8:8b:d7:65 . Давайте поменяем его. Меняем MAC с помощью Macchanger. Установка Macchanger - это ну очень простая утилита, чтобы смотреть, менять и управлять MAC – адресами на ваших сетевых интерфейсах. Она доступна на почти всех Linux – подобных системах. Например, чтобы установить Macchanger на Fedora, CentOS или RHEL используйте команду:/p> sudo dnf install macchanger А если у вас Debian, Ubuntu, Linux Mint или даже Kali Linux, то установить ее можно вот так: sudo apt install macchanger Как использовать Macchanger Помните имя интерфейса, которое мы обсудили чуть раньше? Ага, мы про enp0s12e2 Например, чтобы присвоить этому интерфейсу рандомный mac, используйте команду: sudo macchanger -r enp0s12e2 После смены, проверьте, что мак – адрес поменялся командой: ip addr Он стал другим, не так ли? Теперь, чтобы присвоить конкретный (нужный вам) мак интерфейсу, примените команду: macchanger --mac=XX:XX:XX:XX:XX:XX Где, как не сложно догадаться, XX:XX:XX:XX:XX:XX - mac, который вам нужен. Кстати, если вы поняли, что сделали что-то не то, то вернуть mac – адрес устройства к его изначальному значению можно вот так: macchanger -p enp0s12e2 Меняем MAC с помощью iproute Делать это через macchanger, честно говоря, правильнее. Однако, если не получилось/не хотите, то можно поступить вот так. Первое, выключаем интерфейс: sudo ip link set dev enp0s12e2 down Далее, присваиваем новый mac выключенному интерфейсу: sudo ip link set dev enp0s12e2 address XX:XX:XX:XX:XX:XX Не забываем включить интерфейс обратно: sudo ip link set dev enp0s12e2 up Смотрим статус: ip link show enp0s12e2 Итоги В статье мы обсудили два способа смены адреса: через утилиту macchanger и встроенную команду ip. Мы рекомендуем использовать macchanger, как более надежный способ. Однако, решать вам.
img
Сегодня, в этой статье, вы узнаете, как формируются соседства BGP внутри автономной системы, между автономными системами и даже между маршрутизаторами, которые не связаны напрямую. Кроме того, мы рассмотрим аутентификацию BGP. Предыдущие статьи цикла про BGP: Основы протокола BGP Построение маршрута протоколом BGP Видео: Основы BGP за 7 минут BGP-пиринг Учитывая, что BGP является протоколом маршрутизации AS-to-AS, вполне логично, что внешний BGP (т.е. eBGP) является ключевым компонентом в его операциях. Самое первое, что нам нужно учитывать при работе с eBGP, - это то, что стандарты построены таким образом, что требуется прямое подключение. Это требование конечно можно обойти, но этот момент необходимо рассмотреть. Поскольку предполагается прямое соединение, протокол BGP выполняет две вещи: Он будет проверять значение времени жизни (TTL), и что значение time-to-live установлено в 1. Это означает прямую связь между одноранговыми узлами EBGP. Осуществляется проверка, что два устройства находятся в одной подсети. Еще один важный момент рассмотрения пирингов eBGP - это TCP-порты, которые будут использоваться. Это особенно важно для конфигураций брандмауэров, которые защищают автономные системы. Первый спикер BGP, который инициирует изменения состояния, приходящие по мере формирования соседства, будет получать трафик из случайного TCP-порта, а конечным портом будет TCP-порт 179. Отвечающий спикер BGP будет получать трафик с TCP-порта 179, а порт назначения будет случайным портом. Брандмауэры должны быть перенастроены с учетом изменений в коммуникации. На основе этих изменений спикер BGP инициирует сеанс, и это, вносит изменения для будущего сеанса. Некоторые администраторы даже создают механизмы для обеспечения того, чтобы сформированные пиринги были получены из известного направления. А как насчет IPv6? Ну, как было сказано ранее в предыдущей статье, BGP очень гибок и работает с IPv6, поскольку протокол был изначально спроектирован с учетом IPv6. Вы можете формировать пиринги eBGP (и iBGP) с использованием IPv6- адресации, даже если вы используются префиксы IPv4 для информации о достижимости сетевого уровня. Чтобы сформировать в нашей сети пиринг eBGP, необходимо выполнить следующие действия: Запустите процесс маршрутизации для BGP и укажите локальный AS (router bgp local_as_number). Предоставить удаленному спикеру eBGP IP- адрес и удаленному AS номер (neighbor ip-_of_neighbor remote-as remote_as_number). Пример 1 демонстрирует конфигурацию и проверку EBGP пиринга между маршрутизаторами TPA1 и ATL. Пример 1: Настройка пиринга eBGP ATL#conf t Enter configuration commands, one per line. End with CNTL/Z. ATL(config)#router bgp 220 ATL(config-router)#neighbor 30.30.30.1 remote-as 110 ATL(config-router)#end ATL# TPAl#conf t Enter configuration commands, one per line. End with CNTL/Z. TPA1(config)router bgp 110 TPA1(config-router)#neighbor 30.30.30.2 remote-as 220 TPA1(config-router)#end TPA1# TPAl#show ip bgp summary BGP router identifier 30.30.30.1, local AS number 110 BGP table version is 4, main routing table version 4 1 network entries using 120 bytes of memory 1 path entries using 52 bytes of memory 1/1 BGP path/bestpath attribute entries using 124 bytes of memory 1 BGP AS-PATH entries using 24 bytes of memory 0 BGP route-map cache entries using 0 bytes of memory 0 BGP filter-list cache entries using 0 bytes of memory BGP using 320 total bytes of memory BGP activity 2/1 prefixes, 2/1 paths, scan interval 60 secs Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd 30.30.30.2 4 220 413 414 4 0 0 06:12:46 1 TPA1# Примечание: чтобы облегчить понимание BGP, вы можете включить функцию debug ip bgp, при настройке пиринга. Это позволит увидеть переходные состояния в соседстве. Кроме того, чтобы получить больше информации о соседствах, вы можете использовать команду show ip bgp neighbors. Создание eBGP пиринга, на основе IPv6, выполняется также очень просто, как и на основе IPv4. Единственное изменение заключается в том, что мы заменяем адресацию в IPv4 на IPv6 и активируем соседство. Семейства адресов в маршрутизаторах Cisco для BGP позволяют запускать множество различных схем информирования о достижимости сетевого уровня (NLRI) в рамках одного и того же общего процесса BGP. Пример 2 демонстрирует подход к пирингу IPv6. Пример 2: конфигурация пиринга EBGP с использованием IPv6 ATL#conf t Enter configuration commands, one per line. End with CNTL/Z. ATL(config)#router bgp 220 ATL(config-router)#neighbor 2201:1212:1212::2 remote-as 110 ATL(config-router-af)#neighbor 2201:1212:1212::2 activate ATL(config-router-af)#end ATL# iBGP-пиринг Если вы внимательно посмотрите на топологию, вы можете заметить, что что-то выглядит необычно. Видно, что есть iBGP-пиринг. Почему существует пиринг iBGP, созданный между TPA1 и TPA2? Это выглядит совершенно неуместно. В данном случае, как говорится, внешность может быть обманчива. Главное, что вы должны усвоить относительно BGP, является тот факт, что существует нечто, называемое правилом разделения горизонта (Split Horizon Rule) iBGP. Это правило гласит, что ни один спикер iBGP не может принять обновление и затем отправить это же обновление другому узлу iBGP. Так же в требовании говориться, о полном объединении наших спикеров iBGP для обеспечения полной осведомленности о префиксах. Еще одним важным аспектом, связанным с iBGP, является избыточность. Мы хотим установить несколько физических связей между устройствами, но что произойдет, если связь, используемая для BGP, прервется? Как мы автоматически переключимся к пирингу, используя альтернативное подключение? Простой способ решить эту проблему заключается в реализации loopback-адресов и использовании этих адресов для однорангового соединения. Это то, что мы часто делаем с нашими пирингами BGP, и это может потребовать, дополнительной настройки при использовании подключения к провайдеру. Например, в Cisco мы должны специально указать, что источником пиринга является loopback IP- адрес. Примечание: еще одним важным аспектом при пиринге между петлевыми адресами в iBGP является то, что loopback-адреса фактически доступны между спикерами BGP. Именно здесь очень удобно использовать протокол внутреннего шлюза (IGP), такой как OSPF или EIGRP. Пример 3 показывает конфигурацию пиринга iBGP между устройствами TPA и TPA1. Обратите внимание, что мы используем петлевой подход в том случае, если мы хотим добавить избыточные связи между устройствами в будущем. Пример 3: Настройка пиринга iBGP TPA#conf t Enter configuration commands, one per line. End with CNTL/Z. TPA(config)router bgp 110 TPA(config-router)#neighbor 8.8.8.8 remote-as 110 TPA(config-router)#neighbor 8.8.8.8 update-source loopbackO TPA(config-router)#end TPA# TPAl#conf t Enter configuration commands, one per line. End with CNTL/Z. TPA1(config)#router bgp 110 TPA1(config-router)#neighbor 5.5.5.5 remote-as 110 TPA1(config-router)#neighbor 5.5.5.5 update-source loopbackO TPA1(config-router)#end TPA1# eBGP Multihop В разделе eBGP-пиринг этой статьи, обсуждалось, что ваши соседи будут связаны напрямую. В разделе iBGP мы обсуждали преимущество пиринга между loopback для избыточности. Теперь пришло время ответить на вопрос: Что делать, если ваши спикеры eBGP не подключены напрямую? На самом деле, если мы хотим пиринговать между loopback с eBGP, чтобы воспользоваться потенциальной избыточностью. Как сделать это, поскольку интерфейсы loopback не связаны напрямую друг с другом? BGP решает эту проблему с помощью опции eBGP multihop. С помощью настройки eBGP multihop вы указываете максимальное количество допустимых прыжков. Это пропускает проверку BGP для TTL на значение равное 1, рассмотренное ранее в этой статье. Но как насчет требования прямого подключения? BGP отключает эту проверку в фоновом режиме автоматически, при использовании функции eBGP multihop. Пример 4 демонстрирует настройку eBGP multihop между TPA1 и ATL. Здесь нужен multihop, потому что мы настраиваем пиринг между loopback устройств. Пример 4: eBGP Multihop ATL#conf t Enter configuration commands, one per line. End with CNTL/Z. ATL(config)#router bgp 220 ATL(config-router)#neighbor 8.8.8.8 remote-as 110 ATL(config-router)#neighbor 8.8.8.8 update-source loopbackO ATL(config-router)#neighbor 8.8.8.8 ebgp-multihop 2 ATL(config-router)#end ATL# TPAl#conf t Enter configuration commands, one per line. End with CNTL/Z. TPA1(config)router bgp 110 TPA1(config-router)#neighbor 7.7.7.7 remote-as 220 TPA1(config-router)#neighbor 7.7.7.7 update-source loopbackO TPA1(config-router)#neighbor 7.7.7.7 ebgp-multihop 2 TPA1(config-router)#end TPA1# BGP аутентификация Большинство организаций сегодня добавляют аутентификацию в свои настройки BGP, чтобы защитить их от различного рода атак. По общему признанию, аутентификацию немного сложнее настроить на BGP, чем с на других протоколах маршрутизации, поскольку конфигурация — пирингов- это ручной процесс, который должен выполнен на обоих устройствах. Даже с учетом вышесказанного, аутентификация устройств (eBGP или даже iBGP) - отличная идея. В Cisco настройка аутентификации осуществляется просто. Необходимо задать пароль (т.е. общий секрет) на каждое устройство, настроенное для пиринга. Обязательно усвойте, что этот пароль будет отображаться в открытом виде (по умолчанию) внутри вашей сети. Можно использовать команду service password-encryption для выполнения по крайней мере простого шифрования тех незашифрованных текстовых паролей, которые появляются в конфигурации маршрутизатора. Аутентификация с шифрованием Message Digest 5 (MD5) – это результат простого задания пароля на устройствах. Пример 5 отображает аутентификацию, добавленную в конфигурации для TPA1 и ATL. Пример 5. Настройка аутентификации для BGP-пиринга ATL#conf t Enter configuration commands, one per line. End with CNTL/Z. ATL(config)#router bgp 220 ATL(config-router)#neighbor 8.8.8.8 remote-as 110 ATL(config-router)#neighbor 8.8.8.8 update-source loopbackO ATL(config-router)#neighbor 8.8.8.8 ebgp-multihop 2 ATL(config-router)#neighbor 8.8.8.8 password MySuperSecret121 ATL(config-router)#end ATL# TPAl#conf t Enter configuration commands, one per line. End with CNTL/Z. TPA1(config)router bgp 110 TPA1(config-router)#neighbor 7.7.7.7 remote-as 220 TPA1(config-router)#neighbor 7.7.7.7 update-source loopbackO TPA1(config-router)#neighbor 7.7.7.7 ebgp-multihop 2 ATL(config-router)#neighbor 7.7.7.7 password MySuperSecret121 TPA1(config-router)#end TPA1#
img
Во всем мире умные города являются неотъемлемой частью устойчивого развитие общества. Основные концепции системы "Умный город": Контроль дорожного движения; Управление муниципальным транспортом; Управление общественным транспортом; Управление парковками. Умные города гарантируют, что их граждане доберутся от точки "А" до точки "Б" максимально безопасно и эффективно. Для достижения этой цели муниципалитеты обращаются к разработке IoT (Internet of Things) и внедрению интеллектуальных транспортных решений. Интеллектуальные дорожные решения используют различные типы датчиков, а также извлекают данные GPS из смартфонов водителей для определения количества, местоположения и скорости транспортных средств. В то же время интеллектуальные светофоры, подключенные к облачной платформе управления, позволяют отслеживать время работы "зеленого света" и автоматически изменять огни в зависимости от текущей дорожной ситуации для предотвращения заторов на дороге. Примеры концепций системы "Умного города": Смарт-паркинг С помощью GPS-данных система автоматически определяет, заняты ли места для парковки или доступны, и создают карту парковки в режиме реального времени. Когда ближайшее парковочное место становится бесплатным, водители получают уведомление и используют карту на своем телефоне, чтобы найти место для парковки быстрее и проще, а не заниматься поиском парковочного места вслепую. Служебные программы Умные города позволяют гражданам экономить деньги, предоставляя им больше контроля над своими домашними коммунальными услугами. IoT обеспечивает различные подходы к использованию интеллектуальных утилит: Смарт-счетчики и выставление счетов; Выявление моделей потребления; Удаленный мониторинг. Искусственный интеллект Искусственный интеллект становится ведущим драйвером в цифровой трансформации экономики и социальной жизни. Социальная организация производства и предоставления услуг меняются. Рутинные операции выполняются роботами. Решения принимаются на основе искусственного интеллекта. С помощью него можно предотвратить управленческие ошибки и облегчить принятие решений во всех сферах городского хозяйства и управления. Преобладание цифровых документов над бумажными Реализация этой концепции позволяет городу в полной мере использовать все преимущества цифровых технологий: Оказание государственных услуг более прозрачное; Оптимизация административных процедур; Наиболее эффективное использование ресурсов. Промышленность Реализация проектов по комплексному онлайн-мониторингу промышленных объектов. Благодаря данной системе, можно контролировать состояние системы, управлять ей, а также получать статистику. Транспорт Данные от датчиков IoT могут помочь выявить закономерности того, как граждане используют транспорт. Чтобы провести более сложный анализ, интеллектуальные решения для общественного транспорта могут объединить несколько источников, таких как продажа билетов и информация о движении. Благодаря реализации данного направления можно осуществлять мониторинг транспортной инфраструктуры и мониторинг транспортных средств. Современные решения способны существенно повысить эффективность грузоперевозок, а также оптимизировать работу железнодорожных путей и дорожного покрытия, следя за температурой и влажностью. Известные уязвимости представленных систем В настоящее время происходит рост технологических возможностей, а также рост разнообразия различных электронных устройств и оборудования, используемых в автоматизированных системах управления, всё это ведет к повышению количества уязвимостей к данным системам. В добавок ко всему, процесс введения в эксплуатацию различных решений не дает стопроцентной гарантии того, что не будут допущены различные ошибки в глобальном проектировании. Это создает вероятность появления дополнительных архитектурных уязвимостей. Злоумышленники могут воспользоваться известными проблемами с безопасностью компонентов жизнеобеспечения в системах автоматизации и предпринять попытку реализации атаки. Такие действия злоумышленников могут прервать нормальную работу такого масштабного объекта, как, например, аэропорт, повлечь за собой вывод из нормальной работы системы жизнеобеспечения, блокируя систему безопасности. И, будучи незамеченными вовремя, способны привести к непоправимым последствиям. Большинство систем не защищено от попыток внедрения. Обычно все решения в области защиты систем реализуются на уровне межсетевого экрана. Но в случае с попытками атаки на столь критичные системы этого оказывается недостаточно. Роль информационной безопасности для экосистем Информационная безопасность связана с внедрением защитных мер от реализации угрозы несанкционированного доступа, что является частью управления информационными рисками и включает предотвращение или уменьшение вероятности несанкционированного доступа. Основной задачей информационной безопасности является защита конфиденциальности, целостности и доступности информации, поддержание продуктивности организации часто является важным фактором. Это привело к тому, что отрасль информационной безопасности предложила рекомендации, политики информационной безопасности и отраслевые стандарты в отношении паролей, антивирусного программного обеспечения, брандмауэров, программного обеспечения для шифрования, юридической ответственности и обеспечения безопасности, чтобы поделиться передовым опытом. Информационная безопасность достигается через структурированный процесс управления рисками, который: Определяет информацию, связанные активы и угрозы, уязвимости и последствия несанкционированного доступа; Оценивает риски; Принимает решения о том, как решать или рассматривать риски, т. е. избегать, смягчать, делиться или принимать; Отслеживает действия и вносит коррективы для решения любых новых проблем, изменений или улучшений. Типы протоколов для системы управления "Умным городом" Протоколы и стандарты связи при организации Интернета вещей можно в широком смысле разделить на две отдельные категории. Сетевые Протоколы Интернета Вещей Сетевые протоколы Интернета вещей используются для подключения устройств по сети. Это набор коммуникационных протоколов, обычно используемых через Интернет. При использовании сетевых протоколов Интернета вещей допускается сквозная передача данных в пределах сети. Рассмотрим различные сетевые протоколы: NBIoT (Narrowband Internet of Things) Узкополосный IoT или NB-IoT это стандарт беспроводной связи для Интернета вещей (IoT). NB-IoT относится к категории сетевых стандартов и протоколов маломощных глобальных сетей (LPWAN low power wide area network), позволяющих подключать устройства, которым требуются небольшие объемы данных, низкая пропускная способность и длительное время автономной работы. LoRaWan (Long Range Wide Area Network) глобальная сеть дальнего радиуса действия Это протокол для работы устройств дальнего действия с низким энергопотреблением, который обеспечивает обнаружение сигнала ниже уровня шума. LoRaWan подключает аккумуляторные устройства по беспроводной сети к интернету, как в частных, так и в глобальных сетях. Этот коммуникационный протокол в основном используется умными городами, где есть миллионы устройств, которые функционируют с малой вычислительной мощностью. Интеллектуальное уличное освещение это практический пример использования протокола LoRaWan IoT. Уличные фонари могут быть подключены к шлюзу LoRa с помощью этого протокола. Шлюз, в свою очередь, подключается к облачному приложению, которое автоматически управляет интенсивностью лампочек на основе окружающего освещения, что помогает снизить потребление энергии в дневное время. Bluetooth Bluetooth один из наиболее широко используемых протоколов для связи на короткие расстояния. Это стандартный протокол IoT для беспроводной передачи данных. Этот протокол связи является безопасным и идеально подходит для передачи данных на короткие расстояния, малой мощности, низкой стоимости и беспроводной связи между электронными устройствами. BLE (Bluetooth Low Energy) это низкоэнергетическая версия протокола Bluetooth, которая снижает энергопотребление и играет важную роль в подключении устройств Интернета вещей. ZigBee ZigBee это протокол Интернета вещей, что позволяет смарт-объекты, чтобы работать вместе. Он широко используется в домашней автоматизации. Более известный для промышленных установок, ZigBee используется с приложениями, которые поддерживают низкоскоростную передачу данных на короткие расстояния. Уличное освещение и электрические счетчики в городских районах, которые обеспечивают низкое энергопотребление, используют коммуникационный протокол ZigBee. Он также используется с системами безопасности и в умных домах и городах. Протоколы передачи данных Интернета Вещей Протоколы передачи данных IoT используются для подключения маломощных устройств Интернета вещей. Эти протоколы обеспечивают связь точка-точка с аппаратным обеспечением на стороне пользователя без какого-либо подключения к интернету. Подключение в протоколах передачи данных IoT осуществляется через проводную или сотовую сеть. К протоколам передачи данных Интернета вещей относятся: MQTT (Message Queuing Telemetry Transport) телеметрический транспорт очереди сообщений Один из наиболее предпочтительных протоколов для устройств Интернета вещей, MQTT собирает данные с различных электронных устройств и поддерживает удаленный мониторинг устройств. Это протокол подписки/публикации, который работает по протоколу TCP, что означает, что он поддерживает событийный обмен сообщениями через беспроводные сети. CoAP (Constrained Application Protocol) CoAP это протокол интернет-утилиты для функционально ограниченных гаджетов. Используя этот протокол, клиент может отправить запрос на сервер, а сервер может отправить ответ обратно клиенту по протоколу HTTP. Для облегченной реализации он использует протокол UDP (User Datagram Protocol) и сокращает использование пространства. AMQP (Advanced Message Queuing Protocol) расширенный протокол очереди сообщений AMQP это протокол уровня программного обеспечения для ориентированной на сообщения среды промежуточного программного обеспечения, обеспечивающий маршрутизацию и постановку в очередь. Он используется для надежного соединения точка-точка и поддерживает безопасный обмен данными между подключенными устройствами и облаком. AMQP состоит из трех отдельных компонентов, а именно: обмена, очереди сообщений и привязки. Все эти три компонента обеспечивают безопасный и успешный обмен сообщениями и их хранение. Это также помогает установить связь одного сообщения с другим. Протокол AMQP в основном используется в банковской отрасли. Всякий раз, когда сообщение отправляется сервером, протокол отслеживает сообщение до тех пор, пока каждое сообщение не будет доставлено предполагаемым пользователям/адресатам без сбоев. M2M (Machine-to-Machine) протокол связи между машинами Это открытый отраслевой протокол, созданный для обеспечения удаленного управления приложениями устройств Интернета вещей. Коммуникационные протоколы М2М являются экономически эффективными и используют общедоступные сети. Он создает среду, в которой две машины взаимодействуют и обмениваются данными. Этот протокол поддерживает самоконтроль машин и позволяет системам адаптироваться к изменяющимся условиям окружающей среды. Коммуникационные протоколы M2M используются для интеллектуальных домов, автоматизированной аутентификации транспортных средств, торговых автоматов и банкоматов. XMPP (eXtensible Messaging and Presence Protocol) расширяемый протокол обмена сообщениями и информацией о присутствии XMPP имеет уникальный дизайн. Он использует механизм для обмена сообщениями в режиме реального времени. XMPP является гибким и может легко интегрироваться с изменениями. XMPP работает как индикатор присутствия, показывающий состояние доступности серверов или устройств, передающих или принимающих сообщения. Помимо приложений для обмена мгновенными сообщениями, таких как Google Talk и WhatsApp, XMPP также используется в онлайн-играх, новостных сайтах и голосовом стандарте (VoIP). Протоколы Интернета вещей предлагают защищенную среду для обмена данными. Очень важно изучить потенциал таких протоколов и стандартов, так как они создают безопасную среду. Используя эти протоколы, локальные шлюзы и другие подключенные устройства могут взаимодействовать и обмениваться данными с облаком.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59