По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В нашей базе знаний достаточно много статей касаемо установки и настройки FreePBX, поэтому вы наверняка неоднократно натыкались на скриншоты Dashboard в FreePBX – окна, содержащего в себе сводку по всем сервисам, службам и «железным» характеристикам сервера АТС – в сегодняшней статье мы расскажем как установить похожий дэшборд абсолютно на любой сервер – в нашем примере мы будем его ставить на CentOS 6. Установка Для начала обновим все пакеты с помощью командыyum update, а затем установим Apache, PHP и git пакеты: yum -y install httpd git php php-json php-xml php-common Далее включим и запустим сервис httpd командами: systemctl start httpd systemctl enable httpd Следующим шагом необходимо скачать сам дэшборд с помощью git, но для этого необходимо сначала сменить рабочую директорию на /var/www/html с помощью команды cd /var/www/html. После смены директории вводим команду для скачивания - git clone https://github.com/afaqurk/linux-dash.git - в общем и целом, почти всё готово для запуска. Запуск Теперь перезагружаем сервис httpd с помощью команды service httpd restart и пробуем зайти по следующему адресу: http://адрес_вашего_сервера/linux-dash Если всё прошло успешно – у вас должен запуститься веб-интерфейс следующего вида, как на скриншоте ниже: Обратите внимание, что есть 5 вкладок: System Status - информация о загруженности оперативной памяти, CPU и так далее; Basic Info - общая информация о сервере; Network - информация о сетевых интерфейсах; Accounts - информация об аккаунтах пользователей; Apps - описание используемых приложений; Данное приложение находится в процессе постоянной доработки разработчиком, поэтому вы всегда можете обратиться к нему напрямую через GitHub.
img
Многоуровневый коммутатор будет использовать информацию из таблиц, которые созданы (плоскость управления) для построения аппаратных таблиц. Он будет использовать таблицу маршрутизации для построения FIB (информационной базы пересылки) и таблицу ARP для построения таблицы смежности. Это самый быстрый способ переключения, потому что теперь у нас есть вся информация уровня 2 и 3, необходимая для пересылки аппаратных пакетов IP. Давайте посмотрим на информационную таблицу о пересылке и таблицу смежности на некоторых маршрутизаторах. Будем использовать ту же топологию, что и ранее. 3 роутера и R3 имеет интерфейс loopback0. Будем использовать статические маршруты для полного подключения: R1(config)#ip route 3.3.3.0 255.255.255.0 192.168.23.3 R1(config)#ip route 192.168.23.0 255.255.255.0 192.168.12.2 R2(config)#ip route 3.3.3.0 255.255.255.0 192.168.23.3 R3(config)#ip route 192.168.12.0 255.255.255.0 192.168.23.2 Это статические маршруты, которые мы будем использовать. Теперь посмотрим на таблицу маршрутизации и FIB: show ip cef показывает нам таблицу FIB. Вы можете видеть, что есть довольно много вещей в таблице FIB. Ниже даны разъяснения по некоторым из записей: 0.0.0.0/0 - это для интерфейса null0. Когда мы получим IP-пакеты, соответствующие этому правилу, то оно будет отброшено. 0.0.0.0 /32 - это для всех-нулевых передач. Забудьте об этом, так как мы больше не используем его. 3.3.3.0 /24 - это запись для интерфейса loopback0 R3. Обратите внимание, что следующий переход - это 192.168.12.2, а не 192.168.23.3, как в таблице маршрутизации! 192.168.12.0/24 - это наша непосредственно подключенная сеть. 192.168.12.0/32 зарезервировано для точного сетевого адреса. 192.168.12.1/32 - это IP-адрес на интерфейсе FastEthernet 0/0. 192.168.12.2/32 - это IP-адрес на интерфейсе FastEthernet 0/0 R2. 192.168.12.255/32 - это широковещательный адрес для сети 192.168.12.0/24. 224.0.0.0/4 - соответствует всему многоадресному трафику. Он будет удален, если поддержка многоадресной рассылки отключена глобально. 224.0.0.0/24 - соответствует всему многоадресному трафику, зарезервированному для трафика управления локальной сетью (например, OSPF, EIGRP). 255.255.255.255/32 - широковещательный адрес для подсети. Давайте подробно рассмотрим запись для network 3.3.3.0/24: Номер версии говорит нам, как часто эта запись CEF обновлялась с момента создания таблицы. Мы видим, что для достижения 3.3.3.0/24 нам нужно перейти к 192.168.23.3 и что требуется рекурсивный поиск. Следующий прыжок-192.168.12.2. Он также говорит, что это valid cached adjacency (допустимая кэшированная смежность). Существует целый ряд различных смежностей: Null adjacency: используется для отправки пакетов в интерфейс null0. Drop adjacency: это для пакетов, которые не могут быть переданы из-за ошибок инкапсуляции, маршрутов, которые не могут быть разрешены, или протоколов, которые не поддерживаются. Discard adjacency: это относится к пакетам, которые должны быть отброшены из-за списка доступа или другой политики. Punt adjacency: используется для пакетов, которые отправляются на плоскость управления для обработки. Пакеты, которые не пересылаются CEF, обрабатываются процессором. Если у вас есть много таких пакетов, то вы можете увидеть проблемы с производительностью. Вы можете видеть, сколько пакетов было обработано процессором: Вы можете использовать команду show cef not-cef-switched, чтобы проверить это. Количество пакетов указано по причине: No_adj: смежность не является полной.. No_encap: Информация об ARP является неполной. Unsupp’ted: пакет имеет функции, которые не поддерживаются. Redirect: Перенаправление ICMP. Receive: Это пакеты, предназначенные для IP-адреса, настроенного на интерфейсе уровня 3, пакеты, предназначенные для нашего маршрутизатора. Options: В заголовке пакета есть параметры IP-адреса. Access: ошибка сравнения со списком доступа Frag: ошибка фрагментации пакетов Мы также можем взглянуть на таблицу смежности, в которой хранится информация уровня 2 для каждой записи: Вы можете использовать команду show adjacency summary, чтобы быстро посмотреть, сколько у нас есть смежностей. Смежность - это отображение от уровня 2 до уровня 3 и происходит из таблицы ARP. R1#show adjacency Protocol Interface Address IP FastEthernet0/0 192.168.12.2(9) R1 имеет только один интерфейс, который подключен к R2. Вы можете увидеть запись для ip 192.168.12.2, который является интерфейсом FastEthernet 0/0 R2. Давайте увеличим масштаб этой записи: Мы видим там запись для 192.168.12.2 и там написано: CC011D800000CC001D8000000800 Что означает это число? Это MAC-адреса, которые нам нужны, и Ethertype ... давайте разберем поподробнее его: CC011D800000 - это MAC-адрес интерфейса R2 FastEthernet0 / 0 CC001D800000 - это MAC-адрес интерфейса R1 FastEthernet0/0. 0800 - это Ethertype. 0x800 означает IPv4. Благодаря таблицам FIB и смежности у нас есть вся информация уровня 2 и 3, которая нам требуется для перезаписи и пересылки пакетов. Имейте в виду, что перед фактической пересылкой пакета мы сначала должны переписать информацию заголовка: Исходный MAC-адрес. Конечный MAC-адрес. Контрольная сумма кадров Ethernet. TTL IP-пакета. Контрольная сумма IP-пакетов. Как только это будет сделано, мы сможем переслать пакет. Теперь у вас есть представление о том, что такое CEF и как обрабатываются пакеты. Возникает вопрос, а в чем разница между маршрутизаторами и коммутаторами, поскольку многоуровневый коммутатор может маршрутизировать, а маршрутизатор может выполнять коммутацию. Различие между устройствамистанвится все меньше, но коммутаторы обычно используют только Ethernet. Если вы покупаете Cisco Catalyst 3560 или 3750, то у вас будут только интерфейсы Ethernet. У них есть ASICs, поэтому коммутация кадров может выполняться со скоростью линии связи. С другой стороны, маршрутизаторы имеют другие интерфейсы, такие как последовательные каналы связи, беспроводные сети, и они могут быть модернизированы модулями для VPN, VoIP и т. д. Вы не сможете настроить такие вещи, как NAT/PAT на (маленьком) коммутаторе. Однако грань между ними становится все тоньше Маршрутизаторы используются для маршрутизации, коммутаторы уровня 2-для коммутации, но многоуровневые коммутаторы могут выполнять комбинацию того и другого. Возможно, ваш коммутатор выполняет 80% коммутации и 20% маршрутизации или наоборот. TCAM можно "запрограммировать" на использование оптимальных ресурсов с помощью шаблонов SDM. SDM (Switching Database Manager) используется на коммутаторах Cisco Catalyst для управления использованием памяти TCAM. Например, коммутатор, который используется только для коммутации, не требует никакой памяти для хранения информации о маршрутизации IPv4. С другой стороны, коммутатору, который используется только в качестве маршрутизатора, не потребуется много памяти для хранения MAC-адресов. SDM предлагает ряд шаблонов, которые мы можем использовать на нашем коммутаторе, вот пример коммутатора Cisco Catalyst 3560: Выше вы можете видеть, что текущий шаблон является "desktop default", и вы можете видеть, сколько памяти он резервирует для различных элементов. Вот пример других шаблонов: Вот шаблоны SDM для коммутатора. Мы можем изменить шаблон с помощью команды sdm prefer: Вы должны перезагрузить устройство прежде, чем он вступит в силу: SW1#reload Теперь давайте еще раз проверим шаблон: По сравнению с шаблоном "desktop default" мы теперь имеем двойное хранилище для одноадресных MAC-адресов. Однако для маршрутов IPv4 ничего не зарезервировано. Это хорошая идея, чтобы установить шаблон SDM, для того чтобы соответствовать необходимому использованию вашего коммутатора. Если вы делаете как коммутацию, так и маршрутизацию и не уверены в том, какой шаблон выбрать, то вы можете посмотреть на текущее использование TCAM, вот как это сделать: На данном рисунке многое не отображено, но вы можете видеть, как заполняется TCAM в данный момент. Теперь вам есть что сравнить с шаблонами SDM.
img
Где и зачем? На сегодняшний день логирование информации в процессе разработки имеет огромное значение. Сохранение информации в лог-файлы это первоочередная задача для выявления неполадок и слабых мест в работе приложения. Однако, если приложение работает на основе многих сложных процессов здесь не обойтись без эффективного инструмента навигации и анализа по логам. В одной из предыдущих статей мы разбирали такое решение, как ELK Elasticsearch, Logstash, Kibana. В таком сочетании эти программы способны оперативно решать задачи по сбору, хранению, выборке и анализу информации даже в крупных проектах. Это и является их основным назначением. Однако, эти программы также можно использовать по отдельности, поскольку они являются самостоятельными программными продуктами. Как же можно использовать эти приложения в разных сочетаниях, и для чего это нужно? Приступим к разбору. Самым востребованным инструментом из этой тройки является Elasticsearch. Оно и понятно поисковая система, действующая на основе горизонтального масштабирования (то есть, с возможностью искать данные по запросу пользователя параллельно на множестве серверов) стала очень популярным решением для осуществления поиска не только в логах, но и во множестве данных. При этом данные не обязательно могут быть структурированы, и пользователь с высокой вероятностью получит четкие результаты по запрашиваемому фрагменту текста. При этом широкую популярность данному приложению обеспечивают также широкие возможности по интегрированию с другими программами, множество вариантов конфигурирования, а также подключаемые плагины, работа над которыми ведется как специалистами компании Elastic, так и "народными умельцами" Альтернативным вариантом использования Elasticsearch является вариант с созданием на основе этого приложения централизованных хранилищ данных, содержащих логи использования с разных устройств. Конечно, в этом случае потребуется визуализация, поэтому наилучшее взаимодействие с Elasticsearch обеспечивает Kibana. Данная связка является наиболее популярной и эффективной, поскольку обе программы разрабатывались специально с прицелом на взаимодействие. Несомненным плюсом ELK является модульная архитектура. Комбинируя различные модули, можно сконфигурировать систему для выполнения разнородных задач. Так, например, модуль Metricbeat, включенный в систему позволяет оптимально сконфигурировать систему для мониторинга инфраструктуры,решение Heartbeat позволяет осуществлять uptime-мониторинг. Направления Elastic SIEM и Elastic API также существенно расширяют функциональность ELK Помимо непосредственно разработчиков, комплекс ELK Stack также могут использовать и тестировщики. Конечно, если приложение занимает небольшой объем, то установка ELK вряд ли будет рациональным решением, но, если это будет серьезная объемная программа, тогда тестер сможет быстро выявить проблему и не тратить время разработчика на поиск и анализ. Такая схема работы достаточно популярна и эффективна в некоторых компаниях, разрабатывающих программное обеспечение. Также доступ к логам программы могут затребовать управленцы - менеджер, курирующий проект, или же представители заказчика. В данном случае анализ логов позволяет выявить, эффективно ли ведется работа над исправлением выявленных ранее неисправностей, и не появилось ли новых багов в процессе исправления старых. В последнее время развивается использование комплекса ELK в бизнес-процессах для обеспечения эффективного сбора информации, оперативного анализа и принятия решений. Как пример, можно привести огромный супермаркет со множеством касс. Как правило, для наличного расчета на начало рабочего дня в кассе должна быть определенная сумма наличных для выдачи сдачи. Так вот, комплекс ELK применяется для сбора данных о проведенных по кассе операциях, выборки из собранных данных информации об остатках наличных в разных кассах, и анализа информации, после которого специалист, работающий с программой, может принять решение, какая сумма наличных нужна для обеспечения нужд кассиров по выдаче сдачи. Непрерывный сбор и анализ информации позволяет оценить пики и спады, сравнить информацию с аналогичными показателями за вчерашний день, прошедшие неделю или месяц. По этой причине решение ELK приобретает все большую популярность как инструмент биржевой аналитики. Хотя на текущий момент есть инструменты и получше, однако динамика развития данного решения позволяет думать, что оно вряд ли перестанет быть актуальным и для подобных задач.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59