По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Кто такой DevOps-инженер, чем он занимается в мире IT-разработки и как им стать В этой статье мы познакомим вас с популярной профессией DevOps-инженера и расскажем, что он делает, как им стать, где искать работу и – самое главное – сколько можно зарабатывать. В отличие от некоторых модных карьерных направлений, которые появляются и исчезают, DevOps — это область, которая была и будет востребованной. Согласно прогнозам, к концу 2023 года рынок DevOps вырастет до невероятных $10.3 млрд, так что получение должности DevOps-инженера — это ваш первый шаг к долгосрочной карьере. Если вам нужна работа, сочетающая технологии и творческий подход, то должность DevOps-инженера — это для вас! В этой статье расскажем, как стартовать в этой сфере и что о ней следует знать. Кто такой DevOps-инженер Это специалист, на чьих плечах лежит ответственность за совершенствование и автоматизацию процессов разработки и эксплуатации программного обеспечения. Проще говоря, это методология, объединяющая разработку (Dev) и эксплуатацию (Ops) в разработке программного обеспечения с акцентом на скорость и качество. Задача DevOps-инженера состоит в том, чтобы наладить коммуникацию и сотрудничество между этими двумя направлениями. Что делает DevOps-инженер DevOps-инженер отвечает за создание инструментов, улучшающих процессы разработки, повышение производительности, надежности и безопасности программных продуктов. Ключевые области занятости devops-инженера включают в себя: автоматизацию развертывания и масштабирования систем, управление инфраструктурой как кодом (IaC), непрерывную поставку и интеграцию (CI/CD), мониторинг и логирование, управление конфигурацией и изменениями, работу с облачными платформами и микросервисной архитектурой. Где работать DevOps-инженеру DevOps-инженеры востребованы в различных сферах и отраслях. Они могут работать как в крупных корпорациях, так и в стартапах, где процессы разработки носят более гибкий и динамичный характер. DevOps-подход активно внедряется в современных IT-компаниях, разработчиками облачных решений, а также в корпоративных IT-отделах. Профессионал в этой области может работать как в операционных подразделениях, так и в команде разработки ПО. Необходимые навыки для DevOps-инженера Помните, что DevOps — это не просто набор инструментов или название должности. Это группа скиллов, в которой особое внимание уделяется командной работе, коммуникации и автоматизации. Рассказываем подробнее о каждом из них: навыки программирования: специалист должен обладать опытом в программировании на языках, таких как Python, Ruby, Go, Java, Rust, C и C++. Проще говоря, он должен уметь писать код, который автоматизирует процессы разработки и операционной работы. Навыки работы с системами контроля версий: DevOps-инженер должен знать, как работать с системами контроля версий, такими как Git. Он также отвечает за управление конфигурацией серверов и инфраструктуры. Навыки работы с облачными технологиями: специалист должен уметь работать с AWS, Azure или Google Cloud. Он должен уметь настраивать инфраструктуру в облаке и управлять ресурсами. Навыки автоматизации: DevOps-инженеру требуется автоматизировать процессы разработки и операционной работы. Он должен знать, как настроить CI/CD-пайплайны, тестирование и деплоймент. Навыки мониторинга и логирования. DevOps-инженер должен уметь анализировать логи и метрики, чтобы быстро реагировать на проблемы. Навыки коммуникации. Специалист должен уметь общаться с разработчиками, тестировщиками и операторами. Он должен быть готов к сотрудничеству, давать понятные ТЗ и уметь объяснять сложные технические вопросы простым языком. В рамках DevOps вы будете участвовать во всем цикле разработки ПО — от планирования до внедрения. Как правило, работа в качестве DevOps начинается с должности начального уровня, например, релиз-менеджера или младшего инженера. По мере накопления опыта внедрения инструментов и процессов, можно вырасти: и стать DevOps-инженером, архитектором или системным инженером. Чтобы построить карьеру в качестве DevOps, вам потребуется техническое образование в области информатики или информационных технологий, а также понимание Linux, веб-разработки и Java. Поскольку DevOps охватывает весь жизненный цикл программного обеспечения, вместо того чтобы сосредоточиться на одной области, инженеры DevOps работают над оптимизацией каждого этапа процесса. Это означает, что они будут решать множество задач в день, попутно находя точки роста для продукта. Плюсы и минусы профессии DevOps-инженера Поскольку 86% организаций считают необходимым быстро разрабатывать новое программное обеспечение, вклад DevOps в компанию очень большой. Давайте рассмотрим, какие плюсы у этой работы есть для вас как для сотрудника: Высокий спрос на рынке труда: инженеры востребованы во многих компаниях, в том числе и зарубежных. Именно поэтому DevOps стала такой популярной методологией разработки во всем мире. Высокая зарплата: DevOps-инженеры могут получать от 70 до 600 тысяч рублей — доход всегда растет вместе с умениями и опытом. Большой выбор инструментов: DevOps-инженеры могут использовать широкий спектр инструментов для автоматизации и управления процессами. Быстрый рост в карьере: при условии постоянного обучения и оттачивания технических скиллов DevOps-инженер может продвигаться по карьерной лестнице, не сидя годами на одной зарплате. К тому же, эта роль предполагает работу с другими техническими специалистами, фреймворками, языками программирования, так что вы получите глубокое понимание экосистемы DevOps — и это тоже поможет росту в долгосрочной перспективе. Минусы: Высокие требования к знаниям и навыкам. DevOps-инженеру необходимо постоянно обучаться и развиваться, чтобы оставаться востребованным. Большая ответственность. DevOps-инженер отвечает за автоматизацию процессов разработки и операционной работы, что может повлечь за собой серьезные последствия в случае ошибки или сбоя.. Необходимость быстрого реагирования. Специалист должен быть готов к быстрому реагированию на изменения в проекте или системе, чтобы ничего не «рухнуло». Высокая конкуренция. Чтобы получить работу DevOps-инженером, понадобится подтвердить свои технические навыки и софт-скиллы. Поможет и обучение в техническом вузе или на профильных курсах. Овертаймы или необходимость работать ночью. В некоторых случаях DevOps-инженер может столкнуться с тем, что ему придется выходить в ночные смены, чтобы обеспечить бесперебойную работу системы, либо задерживаться на работе. Такие моменты можно обсудить с руководством и договориться о дополнительной оплате. DevOps-инженер: зарплата и вакансии Зарплата DevOps-инженера в России может значительно варьироваться в зависимости от опыта работы, компании, региона и других факторов. По данным HeadHunter, средняя зарплата DevOps-инженера в России составляет около 130 000 — 150 000 рублей в месяц. В Москве и Санкт-Петербурге зарплаты могут быть выше и составлять от 150 000 до 200 000 рублей в месяц. Учитывайте, что зарплата может зависеть от уровня опыта и квалификации. Новички в этой области могут начинать с зарплаты 70 000 — 80 000 рублей в месяц, тогда как опытные DevOps-инженеры могут зарабатывать более 250 000 рублей в месяц. Как стать DevOps-инженером с нуля Будущее профессии DevOps-инженера выглядит блестящим. Возможно, после прочтения статьи вам показалось, что нужно обладать огромным количеством навыков для обучения этой профессии. Но это не так: начать карьеру DevOps-инженера с нуля можно и даже нужно! Важно выбирать учебные программы, которые охватывают не только основы DevOps, но и практику применения современных инструментов автоматизации, управления конфигурацией и работы с облачными платформами. У нас есть курс «DevOps-инженер с нуля», где вы научитесь использовать инструменты и методы DevOps для автоматизации тестирования, сборки и развертывания кода, управления инфраструктурой и ускорения процесса доставки продуктов в продакшн. Что в итоге У IT-компаний, которые наращивают скорость и эффективность DevOps, сочетая его с другими технологиями, есть потенциал стать лидерами — как в плане технологий, так и в плане доверия клиентов. DevOps-инженер способен повысить качество выпускаемого ПО, улучшить его безопасность и наладить отношения с пользователями. Карьерные возможности, высокие зарплаты и постоянно растущий рынок труда делают профессию привлекательной для тех, кто стремится растить свои навыки в IT. Помните, что единственный способ продвинуться в любой карьере — постоянно быть в курсе последних тенденций и технологий в этой области. Это не только поможет вам быть в курсе новостей сферы, но и поможет получить лучшую работу и зарплату.
img
В многоуровневой и/или модульной системе должен быть какой-то способ связать услуги или объекты на одном уровне с услугами и объектами на другом. Рисунок 1 иллюстрирует проблему. На рисунке 1 Как A, D и E могут определить IP-адрес, который они должны использовать для своих интерфейсов? Как D может обнаружить Media Access Control адрес (MAC), физический адрес или адрес протокола нижнего уровня, который он должен использовать для отправки пакетов на E? Как может client1.example, работающий на D, обнаружить IP-адрес, который он должен использовать для доступа к www.service1.example? Как D и E могут узнать, на какой адрес они должны отправлять трафик, если они не на одном и том же канале или в одном и том же сегменте? Каждая из этих проблем представляет собой отдельную часть interlayer discovery. Хотя эти проблемы могут показаться не связанными друг с другом, на самом деле они представляют собой один и тот же набор проблем с узким набором доступных решений на разных уровнях сети или стеках протоколов. В лекции будет рассмотрен ряд возможных решений этих проблем, включая примеры каждого решения. Основная причина, по которой проблемное пространство interlayer discovery кажется большим набором не связанных между собой проблем, а не одной проблемой, состоит в том, что оно распределено по множеству различных уровней; каждый набор уровней в стеке сетевых протоколов должен иметь возможность обнаруживать, какая услуга или объект на «этом» уровне относится к какой услуге или объекту на каком-либо более низком уровне. Другой способ описать этот набор проблем - это возможность сопоставить идентификатор на одном уровне с идентификатором на другом уровне - сопоставление идентификаторов. Поскольку в наиболее широко применяемых стеках протоколов есть по крайней мере три пары протоколов , необходимо развернуть широкий спектр решений для решения одного и того же набора проблем межуровневого обнаружения в разных местах. Два определения будут полезны для понимания диапазона решений и фактически развернутых протоколов и систем в этой области: Идентификатор - это набор цифр или букв (например, строка), которые однозначно идентифицируют объект. Устройство, реальное или виртуальное, которое с точки зрения сети кажется единым местом назначения, будет называться объектом при рассмотрении общих проблем и решений, а также хостами или услугами при рассмотрении конкретных решений. Есть четыре различных способа решить проблемы обнаружения interlayer discovery и адресации: Использование известных и/или настроенных вручную идентификаторов Хранение информации в базе данных сопоставления, к которой службы могут получить доступ для сопоставления различных типов идентификаторов. Объявление сопоставления между двумя идентификаторами в протоколе Вычисление одного вида идентификатора из другого Эти решения относятся не только к обнаружению, но и к присвоению идентификатора. Когда хост подключается к сети или служба запускается, он должен каким-то образом определить, как он должен идентифицировать себя - например, какой адрес Интернет-протокола версии 6 (IPv6) он должен использовать при подключении к локальной сети. Доступные решения этой проблемы - это те же четыре решения. Хорошо известные и/или настраиваемые вручную идентификаторы Выбор решения часто зависит от объема идентификаторов, количества идентификаторов, которые необходимо назначить, и скорости изменения идентификаторов. Если: Идентификаторы широко используются, особенно в реализациях протоколов, и сеть просто не будет работать без согласования межуровневых сопоставлений и ... Количество сопоставлений между идентификаторами относительно невелико, и ... Идентификаторы, как правило, стабильны - в частности, они никогда не изменяются таким образом, чтобы существующие развернутые реализации были изменены, чтобы сеть могла продолжать функционировать, а затем ... Самым простым решением является ведение какой-либо таблицы сопоставления вручную. Например, протокол управления передачей (TCP) поддерживает ряд транспортных протоколов более высокого уровня. Проблема соотнесения отдельных переносимых протоколов с номерами портов является глобальной проблемой межуровневого обнаружения: каждая реализация TCP, развернутая в реальной сети, должна иметь возможность согласовать, какие службы доступны на определенных номерах портов, чтобы сеть могла «работать». Однако диапазон межуровневых сопоставлений очень невелик, несколько тысяч номеров портов необходимо сопоставить службам, и довольно статичен (новые протоколы или службы добавляются не часто). Таким образом, эту конкретную проблему легко решить с помощью таблицы сопоставления, управляемой вручную. Таблица сопоставления для номеров портов TCP поддерживается Internet Assigned Numbers Authority (IANA) по указанию Engineering Task Force (IETF); Часть этой таблицы показана на рисунке 2. На рисунке 2 службе echo назначен порт 7; эта служба используется для обеспечения функциональности ping. База данных и протокол сопоставления Если число записей в таблице становится достаточно большим, число людей, участвующих в обслуживании таблицы, становится достаточно большим или информация достаточно динамична, чтобы ее нужно было изучать во время сопоставления, а не при развертывании программного обеспечения, имеет смысл создавать и распространять базу данных динамически. Такая система должна включать протоколы синхронизации разделов базы данных для представления согласованного представления внешним запросам, а также протоколы, которые хосты и службы могут использовать для запроса базы данных с одним идентификатором, чтобы обнаружить соответствующий идентификатор из другого уровня сети. Базы данных динамического сопоставления могут принимать входные данные с помощью ручной настройки или автоматизированных процессов (таких как процесс обнаружения, который собирает информацию о состоянии сети и сохраняет полученную информацию в динамической базе данных). Они также могут быть распределенными, что означает, что копии или части базы данных хранятся на нескольких различных хостах или серверах, или централизованными, что означает, что база данных хранится на небольшом количестве хостов или серверов. Система доменных имен (DNS) описывается как пример службы сопоставления идентификаторов, основанной на динамической распределенной базе данных. Протокол динамической конфигурации хоста (DHCP) описан в качестве примера аналогичной системы, используемой в основном для назначения адресов. Сопоставления идентификаторов объявления в протоколе Если объем проблемы сопоставления может быть ограничен, но количество пар идентификаторов велико или может быстро меняться, то создание единого протокола, который позволяет объектам запрашивать информацию сопоставления напрямую от устройства, может быть оптимальным решением. Например, на рисунке 1 D может напрямую спросить E, какой у него локальный MAC-адрес (или физический). Интернет протокол IPv4 Address Resolution Protocol (ARP) является хорошим примером такого рода решений, как и протокол IPv6 Neighbor Discovery (ND). Вычисление одного идентификатора из другого В некоторых случаях можно вычислить адрес или идентификатор на одном уровне из адреса или идентификатора на другом уровне. Немногие системы используют этот метод для сопоставления адресов; большинство систем, использующих этот метод, делают это для того, чтобы назначить адрес. Одним из примеров такого типа систем является Stateless Address Autoconfiguration (SLAAC), протокол IPv6, который хосты могут использовать для определения того, какой IPv6-адрес должен быть назначен интерфейсу. Другим примером использования адреса нижнего уровня для вычисления адреса верхнего уровня является формирование адресов конечных систем в наборе протоколов International Organization for Standardization (ISO), таких как Intermediate System to Intermediate System (IS-IS).
img
FHRP (Протокол резервирования первого перехода) - это группа протоколов способные обеспечить клиентов отказоустойчивым шлюзом. Что за первый переход такой?. У нас есть коммутируемая среда (SW1) и есть Internet . Internet это маршрутизируемая среда . И для того чтобы перейти из коммутируемой среды , в маршрутизируемую среду для того чтобы выйти в интернет , как раз эти роутеры(R1,R2,VR - Virtual Router) обеспечивают данный переход и для того ,чтобы обеспечить отказоустойчивость этого перехода , его нужно резервировать . А потому и называется протоколы резервирования первого перехода. И все протоколы группы FHRP будут работать в единой логике: R1 , R2 будут прикидываться VR и в случае отказа одного из маршрутизаторов, то его работу возьмет другой. Forwarding Router ( FR ) - это роутер ,который данный момент активен и маршрутизирует трафик . Standby Router ( SR ) - это роутер ,который стоит в резерве и ждет , когда накроется FR ,чтобы перехватите его работу на себя , в случае сбоя маршрутизатора. FHRPs - это группа ,а значит пришло время познакомить вас с этими протоколами. HSRP (Hot Standby Router Protocol) - Проприетарный протокол разработанный Cisco; VRRP (Virtual Router Redundancy Protocol) - Свободный протокол ,сделан на основе HSRP; GLBP (Gateway Load Balancing Protocol) - Проприетарный протоколCisco , обеспечивающий распределение нагрузки на несколько маршрутизаторов( шлюзов) используя 1 виртуальный адрес. CARP( Common Address Redundancy Protocol) - свободный , разработан как часть OpenBSD , портирован во FreeBSD. Итак начнём с HSRP Протокол HSRP рассчитан на 2 роутера, 3 это уже лишний и с этим уже справиться протокол GLBP Предположим ,что R1 это маршрутизатор выхода в интернет и для этого мы поднимем на нём Loopback 1 с адресом 200.200.200.200 и пропишем его в маршруте по умолчанию. Между маршрутизаторами будет настроен RIPv2 и будут анонсированы 2 классовые сети( network 10.0.0.0 и network 192.168.0.0) для простоты анонсирования маршрутов. R2,R1 настраивается также. А теперь по порядку , настроим HSRP: R1(config)# interface e 0/0 - переходим на интерфейс ethernet 0/0 (этот интерфейс смотрит в локальную сеть на коммутатор ) R1(config-if)# ip address 192.168.0.2 255.255.255.0 - задаем ip адрес для физического интерфейса R1(config-if)# standby 1 ip 192.168.0.254 - задаем виртуальный ip адрес (который будет основным шлюзом для свитчей, смотрящих на конфигурируемый роутер). У обоих роутеров он одинаковый R1(config-if)# stanby 1 priority 110 - устанавливаем приоритет данного роутера в 110 (по умолчанию приоритет 100) R1(config-if)# standby 1 preempt - задаем режим приемтинга R1(config-if)# standby 1 authentication md5 key-string MyPassword - задаем аутентификацию, если необходимо. Пароль будет передаваться с защитой алгоритмом хеширования md5, пароль будет MyPassword R1(config-if)# standby 1 timers 100 255 - регулировка таймеров hsrp, где 100 - hello интервал в секундах (как часто посылаются пакеты hello пакеты keep-alive) и 255 - hold interval в секундах (через какой промежуток времени признавать соседа недоступным) R1(config-if)# standby 1 preempt delay minimum 300 - настройка времени задержки (в секундах), через которое роутер будет становиться главным. Эта команда требуется для того,чтобы сначала отработали другие протоколы,прежде чем заработает HSRP . Пример: OSPF включенный на роутере в большой сети не успеет передать маршруты все ,а тут сразу заработает HSRP ,естественно он знать все маршруты не будет,а значить и стабильно гнать трафик тоже. Как раз время delay он будет использовать для того,чтобы дать OSPF передать все маршруты и после этого вкл HSRP. Сам VPC должен получить следующие настройки: IP : 192.168.0.10/24 GW: 192.168.0.254 Главное ,чтобы клиент был в одной подсети и в качестве шлюза был виртуальный IP адрес. TRACKING Также полезно вешать TRACK на интерфейсы ,так как HSRP работает только в сторону ,куда направлен интерфейс ,то он не сможет отработать,когда упадут линки ,смотрящие на роутеры выше.(в данном случае это R3) Router(config)# track 1 interface fa0/1 line-protocol - отслеживаем состояние интерфейса fa0/1, если он падает, то сработает объект отслеживания track 1. Router(config-if)# standby 1 track 1 decrement 15 - если сработает объект отслеживания track 1, то текущий приоритет будет понижен на 15 единиц. Router(config-if)# standby 1 track 1 fa0/1 20 - работает только в HSRP. Позволяет отслеживать интерфейс без дополнительного создания объекта отслеживания. R1,R2,R0 будут настраиваться одинаково, принцип сохраняется. А теперь нюансы HSRP При работе нескольких VLAN , HSRP может идти трафик не совсем рационально из-за протокола STP. Представим ,что R1 это root primary за 10 VLAN, а R2 это ACTIVE router в HSRP . Это значит ,что любой трафик за этот VLAN будет идти следующим образом:VPC - R2 - R1 - R3 вместо того,чтобы идти напрямую VPC - R1 - R3. (L2 трафик всегда ходит через root во избежание петель) Поэтому рекомендуют использовать HSRP version 2(по умолчанию вкл 1 максимум 255 процессов,а во 2 их 4095) и использовать наилучший приоритет для того роутера, который сейчас в сети root primary за текущий VLAN. И хорошей практикой будет если номер VLAN будет совпадать с номером процесса HSRP. ( № HSRP = VLAN ) 3 Роутера в HSRP не имеет смысла держать,так как он всё равно будет в состоянии Listen и включиться только тогда,если active пропадет, standby займет его место , и только тогда он перейдет в состоянии standby.(речь идет о 3 роутере) Тоже самое будет касаться 4,5 ...n роутеров. SLA Бывает и другая ситуация ,когда не сам линк от R1 падает ,а устройство находящиеся за ним,к примеру SW2 упал link до R3. Проблему способен решить сервис SLA - Service Level Agreement. Суть его проста,он ping сервис до провайдера и если он падает ,то отрабатывает track. R1(config)# ip sla 1 - создаем зонд R1(config-ip-sla)# icmp-echo 215.215.215.2 source-interface e0/2 - посылаем icmp echo ping на 215.215.215.2 R1(config-ip-sla-echo)# frequency 10 - посылаем icmp echo ping с частотой каждые 10 секунд R1(config)# ip sla schedule 1 start-time now life forever - задаем расписание работы ip sla. В данном случае зон будет запущен прямо сейчас, при этом время окончания не задано (навсегда) R1(config)# track 1 ip sla 1 reachability - устанавливаем объект отслеживания на доступность того хоста, на который посылаем icmp echo ping R1(config)# ip route 0.0.0.0 0.0.0.0 2.2.2.2 track 1 - направляем трафик по этому маршруту если объект трекинга track 1 работает (хост пингуется) R1(config)# ip route 0.0.0.0 0.0.0.0 3.3.3.3 10 - если не пингуется, направляем трафик в интернет по другому маршруту (Внимание! Здесь важно задать именно плохую метрику, например 10, иначе будут работать оба маршрута! (балансировка)) R1# show track 1 - показать состояние объекта отслеживания VRRP Настройка VRRP не сильно отличается от HSRP . Настраивается он также как и HSRP, только вместо standby используется vrrp. Router(config-if)# vrrp 1 ip 192.168.1.1 - включение vrrp. Проще пройтись по отличиям ,чем заново описывать все команды. У VRRP тоже только 2 состояния Master и Backup(HSRP active и standby) Preempt включен по умолчанию (HSRP он отключен) При падении линка VRRP проводит выборы роутера(HSRP имеет запасной). Главного выбирают по IP адресу, когда проводят выборы. Поддержка Аутентификации в VRRP отсутствует (RFC отсутствует),но в Cisco она реализована(HSRP по умолчанию) VRRP по умолчанию hello таймер равен 1 секунде , dead таймер равен 3(у HSRP 3 и 10 соответственно) Виртуальный адрес может совпадать с адресом интерфейса(HSRP такой адрес не даст прописать) Использует Multicast HSRP равен 224.0.0.2 ( version 1) 224.0.0.102 (version 2) ,а VRRP 224.0.0.18 Может отслеживать только объекты , а HSRP и интерфейсы , и объекты.(смотри раздел tracking) Диагностика Router# show standby (vrrp or glbp) - показать общую информацию по протоколу группы FHRP Router# show standby brief - показать информацию по протоколу группы FHRP в виде таблицы
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59