По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Привет, друг! Ты, наверное, слышал аббревиатуру DPI. А как это расшифровывается и что это вообще такое? Это сейчас и узнаем. Что такое DPI? Deep Packet Inspection (DPI) - это продвинутый метод проверки и управления сетевым трафиком. DPI представляет собой форму фильтрации пакетов, которая обнаруживает, идентифицирует, классифицирует, перенаправляет или блокирует пакеты с конкретными данными или полезной нагрузкой, которые обычная фильтрация пакетов (которая проверяет только заголовки пакетов) не может обнаружить. Обычно функции глубокой проверки пакетов работают на уровне приложений (Application) модели OSI, в то время как традиционная фильтрация пакетов только сообщает информацию заголовка каждого пакета. Другими словами, традиционная фильтрация пакетов была похожа на чтение названия книги без осознания или оценки содержимого внутри. Как работает DPI? DPI проверяет содержимое пакетов, проходящих через заданную точку, и принимает решения в режиме реального времени на основе правил, назначенных компанией, провайдером или сетевым администратором, в зависимости от того, что содержит пакет. До недавнего времени фаерволы не обладали вычислительной мощностью, необходимой для более глубоких проверок больших объемов трафика в режиме реального времени. Глубокая проверка пакетов может проверить содержимое сообщений и определить конкретное приложение или службу, из которой оно поступает. Кроме того, фильтры могут быть запрограммированы для поиска и перенаправления сетевого трафика из определенного диапазона адресов Интернет-протокола (IP) или определенной онлайн-службы, например, такой как Facebook. Как используется DPI? Глубокая проверка пакетов также может использоваться в управлении сетью для оптимизации потока сетевого трафика. Например, сообщение, помеченное как высокоприоритетное, может быть направлено к месту назначения раньше менее важных или низкоприоритетных сообщений, или пакетов, участвующих в случайном просмотре Интернета. DPI также может использоваться для регулирования передачи данных, чтобы предотвратить злоупотребление p2p, что улучшает производительность сети. Также DPI используется для предотвращения проникновения в вашу корпоративную сеть червей, шпионских программ и вирусов. Кроме того, DPI также можно использовать для расширения возможностей интернет провайдеров по предотвращению использования IoT-устройств при DDOS-атаках путем блокирования вредоносных запросов от устройств. Глубокая проверка пакетов также может предотвратить некоторые типы атак переполнения буфера. Наконец, глубокая проверка пакетов может помочь вам предотвратить утечку информации, например, при отправке конфиденциального файла по электронной почте. Вместо того, чтобы успешно отправить файл, пользователь вместо этого получит информацию о том, как получить необходимое разрешение и разрешение на его отправку. Техники DPI Два основных типа продуктов используют глубокую проверку пакетов: межсетевые экраны, в которых реализованы такие функции IDS (Intrusion Detection System – система обнаружения вторжений), как проверка содержимого, и системы IDS, которые нацелены на защиту сети, а не только на обнаружение атак. Некоторые из основных методов, используемых для глубокой проверки пакетов, включают в себя: Сопоставление шаблонов или сигнатур (Pattern or signature matching) - Один из подходов к использованию фаерволов, которые используют функции IDS, анализирует каждый пакет на основе базы данных известных сетевых атак. Недостатком этого подхода является то, что он эффективен только для известных атак, а не для атак, которые еще предстоит обнаружить. Аномалия протокола (Protocol anomaly) - Другой подход к использованию фаерволов с функциями IDS, аномалия протокола использует подход «запрет по умолчанию», который является ключевым принципом безопасности. В этой технике используются определения протокола (protocol definitions), для того чтобы определить, какой контент должен быть разрешен. Основным преимуществом этого подхода является то, что он обеспечивает защиту от неизвестных атак. Решения IPS - Некоторые решения IPS (Intrusion Prevention System – система предотвращения вторжений) используют технологии DPI. Эти решения имеют функции, аналогичные встроенным IDS, хотя они могут блокировать обнаруженные атаки в режиме реального времени. Одной из самых больших проблем при использовании этого метода является риск ложных срабатываний, который может быть смягчен до некоторой степени, путем создания консервативной политики. Существуют некоторые ограничения для этих и других методов DPI, хотя поставщики предлагают решения, направленные на устранение практических и архитектурных проблем различными способами. Кроме того, решения DPI теперь предлагают ряд других дополнительных технологий, таких как VPN, анализ вредоносных программ, антиспам-фильтрация, фильтрация URL-адресов и другие технологии, обеспечивающие более комплексную защиту сети. Недостатки DPI Ни одна технология не является идеальной, и DPI не является исключением. У нее есть несколько слабых сторон: Глубокая проверка пакетов очень эффективна для предотвращения таких атак, как атаки типа «отказ в обслуживании», атаки с переполнением буфера и даже некоторых форм вредоносных программ. Но это также может быть использовано для создания подобных атак. Глубокая проверка пакетов может сделать ваш текущий фаервол и другое программное обеспечение безопасности, которое вы используете, более сложным в управлении. Вы должны быть уверены, что вы постоянно обновляете и пересматриваете политики глубокой проверки пакетов, чтобы обеспечить постоянную эффективность. Глубокая проверка пакетов может замедлить работу вашей сети, выделив ресурсы для фаервола, чтобы он мог справиться с нагрузкой обработки. Помимо проблем конфиденциальности и внутренних ограничений глубокой проверки пакетов, некоторые проблемы возникли из-за использования сертификатов HTTPS и даже VPN с туннелированием. Некоторые фаерволы теперь предлагают проверки HTTPS, которые расшифровывают трафик, защищенный HTTPS, и определяют, разрешено ли пропускать контент. Тем не менее, глубокая проверка пакетов продолжает оставаться ценной практикой для многих целей, начиная от управления производительностью и заканчивая аналитикой сети, экспертизой и безопасностью предприятия.
img
Несмотря на то, что системы на базе Linux считаются самыми неуязвимыми, всё же существуют риски, к которым нужно относиться серьезно. Руткиты, вирусы, программы-вымогатели и многие другие вредоносные программы часто могут атаковать и вызывать проблемы на серверах Linux. Независимо от установленной операционной системы, для серверов необходимо принимать повышенные меры безопасности. Крупные корпорации и организации взялись за повышение уровня безопасности и разработали инструменты, которые не только обнаруживают недостатки и вредоносные программы, но и исправляют их и принимают меры для предотвращения разного вида неприятностей. Но такие ПО стоят дорого и не все могут позволить себе их покупать. К счастью, есть инструменты, по приемлемой цене или вовсе бесплатные, которые могут помочь с поиском и устранением уязвимостей. Они могут обнаруживать слабые места в различных разделах сервера на базе Linux. Lynis Lynis это известный инструмент безопасности, который пользуется популярностью среди Linux специалистов. Он также работает на системах на базе Unix и macOS. Это программное обеспечение с открытым исходным кодом, которое с 2007 года распространяется под лицензией GPL. Lynis не требует установки. Можно извлечь его из загруженного пакета или tar архива и запустить. Чтобы получить доступ к полной документации и исходному коду, можно скачать его с Git, Lynis был создан автором Rkhunter Майклом Боеленом. Она имеет две версии: для домашнего пользования и для предприятий. Обе версии показывают отличные результаты. Chkrootkit Как вы уже наверно предположили, chkrootkit утилита для сканирования системы на наличие руткитов. Руткиты это вид вредоносного ПО, который дает неавторизованному пользователю право на вход в систему. Если в парке есть сервера на базе Linux, то руткиты могут стать настоящей проблемой. Chkrootkit одна из самых популярных программ на базе Unix, которая помогает обнаруживать руткиты в системе. Для обнаружения проблем она использует команды "strings" (команда Linux для просмотра содержимого бинарного файла) и "grep". Она может быть запущена как с альтернативной директории, так и внещнего накопителя в случае работы с уже скомпрометированной системой. Различные компоненты chkrootkit занимаются поиском удалённые записи в "wtmp" и "lastlog" файлах, находят записи сниффера или конфигурационных файлов руткитов, а также проверяют на наличие скрытых записей в "/proc" или вызовов программы "readdir". Чтобы использовать эту утилиту нужно скачать последнюю версию, распаковать, скомпилировать и запустить. Rkhunter Майкл Болин разработчик, который создал в 2003 году Rkhunter. Эта очень полезная программа для POSIX систем помогает обнаруживать руткиты и другие уязвимости в системах Linux. Rkhunter тщательно просматривает файлы (скрытые или видимые), каталоги по умолчанию, модули ядра и неправильно настроенные разрешения в поисках слабых мест. После обычной проверки, он сопоставляет результаты с безопасными и правильными записями баз данных и ищет подозрительное ПО. Так как программа полностью написана на Bash, его можно использовать не только на Linux, но и на всех версиях Unix. ClamAV Написанный на C++ ClamAV антивирус с открытым исходным кодом, который помогает выявлять вирусы, трояны и другие виды вредоносных программ. Он полностью бесплатен, ввиду чего очень много пользователей используют его для сканирования персональных данных включая электронную почту на наличие вредоносных файлов любого типа. Он так же может быть использован для сканирования серверов. Изначально он был создан только для Unix. Несмотря на это, есть сторонние версии, которые можно использовать на Linux, BSD, AIX, MacOS, OpenVMS, Solaris. ClamAV регулярно выполняет автоматическое обновление баз данных для выявления самых последних угроз. Есть возможность сканирования в режиме командной строки, а также включает в себя расширяемый многопоточный демон, благодаря чему, существенно увеличивается скорость сканирования. Он проверяет различные типы файлов на наличие уязвимостей. Антивирус поддерживает все типы сжатых файлов включая RAR, Zip, Gzip, Tar, Cabinet, OLE2, CHM, SIS format, BinHex и почти все типы почтовых систем. LMD Linux Malware Detect LMD другой очень популярный продукт для Linux систем, специально разработанный для часто встречающихся угроз. Как и другие подобные продукты для поиска вредоносных программ и руткитов, LMD использует базу сигнатур для выявления и прекращения работы любого вредоносного кода. LMD не ограничивается собственными базами сигнатур. Для лучшего поиска он может использовать базы ClamAV и Team Cymru. Для заполнения своих баз, LMD собирает данные об уязвимостях на пограничных системах обнаружения угроз. Тем самым он генерирует новые сигнатуры для вредоносных ПО, которые активно эксплуатируются в атаках. Radare2 Radare2 (R2) фреймворк для анализа и реверс-инжиниринга двоичных файлов с превосходными возможностями обнаружения. Он может выявить заражённые файлы, даёт пользователю инструменты для управления ими, нейтрализует потенциальные угрозы. Фереймворк использует NoSQL базу sdb. Исследователи безопасности и разработчики ПО предпочитают эту программу за возможность отличного визуального представления данных. Одной из отличительных особенностей Radare2 является то, что пользователь не должен использовать командную строку для выполнения таких задач, как статический/динамический анализ и использование программного обеспечения. Рекомендуется для любого типа исследований по бинарным данным. OpenVAS Open Vulnarability Assessment System или OpenVAS эта размещённая система для сканирования уязвимостей и управления ими. Она предназначена для предприятий любого размера и помогает выявлять невидимые проблемы безопасности в инфраструктуре. Изначально этот продукт был известен под названием GNessUs, до тех пор, пока новый владелец, Greenbone Networks, не сменил название на OpenVAS. Начиная с версии 4.0, OpenVAS предоставляет непрерывное обновление Сетевой базы Тестирования Уязвимостей обычно менее чем за 24 часа. На июнь 2016 система имеет больше 47 тысяч баз. Эксперты безопасности используют OpenVAS из-за возможности быстрого сканирования. Он также отличается превосходной возможностью конфигурирования. Программы OpenVAS могут использоваться на автономных виртуальных машинах для проведения безопасных исследований вредоносных программ. Его исходный код доступен под лицензией GNU GPL. Многие другие средства обнаружения уязвимостей зависят от OpenVAS - именно поэтому его принимают как важнейшую программу в платформах на базе Linux. REMnux REMNux использует метод обратного-инжиниринга для анализа вирусов. Он может обнаруживать большинство проблем на основе браузера, скрытых в изменённых фрагментах кода JavaScript и апплетах Flash. Он также способен сканировать PDF-файлы и выполнять экспертизу памяти. Средство помогает обнаруживать вредоносные программы внутри папок и файлов, которые сложно проверить с помощью других программ обнаружения вирусов. Он эффективен благодаря своим возможностям декодирования и обратного проектирования. Он может определять свойства подозрительных программ, и, будучи легким, он в значительной степени не обнаруживается интеллектуальными вредоносными программами. Он может использоваться как на Linux, так и на Windows, а его функциональность может быть улучшена с помощью других инструментов сканирования. Tiger В 1992 году Техасский Университет A&M начал работать над Tiger для повышения безопасности компьютеров кампуса. Сегодня же она самая популярная система для Unix-подобных платформ. Уникальность этого решения заключается в том, что оно является не только средством аудита безопасности, но и системой обнаружения вторжений. Программа свободно распространяются под лицензией GPL. Она зависит от средств POSIX, и вместе они могут создать идеальную инфраструктуру, которая может значительно повысить безопасность вашего сервера. Tiger полностью написан на shell - это одна из причин его эффективности. Он подходит для проверки состояния и конфигурации системы, а его многоцелевое использование делает его очень популярным среди людей, использующих инструменты POSIX. Maltrail Maltrail - это система обнаружения трафика, способная обеспечить чистоту трафика вашего сервера и помочь ему избежать любых угроз. Она выполняет эту задачу, сравнивая источники трафика с сайтами в черном списке, опубликованными в Интернете. Помимо проверки сайтов, включенных в черный список, она также использует усовершенствованные эвристические механизмы для обнаружения различных видов угроз. Даже если это необязательная функция, она пригодится, когда вы считаете, что ваш сервер уже подвергся атаке. Эта система имеет особый сенсор, способный обнаруживать трафик сервера, и посылать информацию на сервер Maltrail. Система обнаружения проверяет, достаточно ли безопасен трафик для обмена данными между сервером и источником. YARA Созданная для Linux, Windows и macOS, YARA (Yet Another Ridiculous Acronym) является одним из наиболее важных инструментов, используемых для исследования и обнаружения вредоносных программ. Он использует текстовые или двоичные шаблоны для упрощения и ускорения процесса обнаружения, что упрощает и ускоряет решение задачи. У YARA есть некоторые дополнительные функции, но для их использования необходима библиотека OpenSSL. Даже если у вас нет этой библиотеки, вы можете использовать YARA для базового исследования вредоносных программ с помощью механизма, основанного на правилах. Также его можно использовать в песочнице Cuckoo - песочнице на основе Python, идеальной для проведения безопасных исследований вредоносного программного обеспечения. Как выбрать лучшую утилиту? Все инструменты, о которых мы говорили выше, работают очень хорошо, и когда инструмент популярен в среде Linux, вы можете быть уверены, что его используют тысячи опытных пользователей. Нужно помнить, что каждое приложение обычно зависит от других программ. Например, это касается ClamAV и OpenVAS. Необходимо понять, что нужно вашей системе и в каких компонентах она может иметь уязвимости. Во-первых, используйте легковесный инструмент, чтобы изучить, какой раздел требует внимания. Затем используйте соответствующий инструмент для решения проблемы.
img
В предыдущих статьях были рассмотрены три обширные задачи, которые должна решать каждая плоскость управления для сети с коммутацией пакетов, и рассмотрен ряд решений для каждой из этих задач. Первой рассматриваемой задачей было определение топологии сети и ее доступности. Во-вторых, вычисление свободных от петель (и, в некоторых случаях, непересекающихся) путей через сеть. Последняя задача- это реакция на изменения топологии, на самом деле представляет собой набор задач, включая обнаружение и сообщение об изменениях в сети через плоскость управления. В этой серии лекций мы объединим эти заждачи и решения путем изучения нескольких реализаций распределенных плоскостей управления, используемых для одноадресной пересылки в сетях с коммутацией пакетов. Реализации здесь выбраны не потому, что они широко используются, а потому, что они представляют собой ряд вариантов реализации среди решений, описанных в предыдущих лекциях. В каждом конкретном случае рассматривается базовая работа каждого протокола; в последующих статьях мы будем углубляться в вопросы сокрытия информации и другие более сложные темы в плоскостях управления, поэтому здесь они не рассматриваются. Классификация плоскости управления Плоскости управления обычно классифицируются по двум характеристикам. Во-первых, они разделяются в зависимости от того, где вычисляются loop-free пути, будь то на передающем устройстве или выключенном. Плоскости управления, в которых фактические коммутационные устройства непосредственно участвуют в расчете loop-free путей, затем разделяются на основе вида информации, которую они несут о сети. Классификация, основанная на алгоритме, используемом для вычисления loop-free путей, отсутствует, хотя это часто тесно связано с типом информации, передаваемой плоскостью управления. В то время как централизованные плоскости управления часто связаны с несколькими (или одним, концептуально) контроллерами, собирающими информацию о достижимости и топологии от каждого коммутационного устройства, вычисляющими набор loop-free путей и загружающими полученную таблицу пересылки на коммутационные устройства, концепция гораздо менее строгая. Ц В более общем смысле централизованная плоскость управления означает просто вычисление некоторой части информации о пересылке где-нибудь, кроме фактического устройства пересылки. Это может означать отдельное устройство или набор устройств; это может означать набор процессов, запущенных на виртуальной машине; это может означать вычисление всей необходимой информации о пересылке или (возможно) большей ее части. Плоскости распределенного управления обычно различаются тремя общими характеристиками: Протокол, работающий на каждом устройстве и реализующий различные механизмы, необходимые для передачи информации о доступности и топологии между устройствами. Набор алгоритмов, реализованных на каждом устройстве, используемый для вычисления набора loop-free путей к известным пунктам назначения. Способность обнаруживать и реагировать на изменения доступности и топологии локально на каждом устройстве. В распределенных плоскостях управления не только каждый прыжок (hop by hop) с коммутацией пакетов, но и каждый прыжок определяет набор loop-free путей для достижения любого конкретного пункта назначения локально. Плоскости распределенного управления обычно делятся на три широких класса протоколов: состояние канала, вектор расстояния и вектор пути. В протоколах состояния канала каждое устройство объявляет состояние каждого подключенного канала, включая доступные пункты назначения и соседей, подключенных к каналу. Эта информация формирует базу данных топологии, содержащую каждое звено, каждый узел и каждый достижимый пункт назначения в сети, через который алгоритм, такой как Dijkstra или Suurballe, может быть использован для вычисления набора loop-free или непересекающихся путей. Протоколы состояния канала обычно заполняют свои базы данных, поэтому каждое устройство пересылки имеет копию, которая синхронизируется с каждым другим устройством пересылки. В протоколах вектора расстояния каждое устройство объявляет набор расстояний до известных достижимых пунктов назначения. Эта информация о достижимости объявляется конкретным соседом, который предоставляет векторную информацию или, скорее, направление, через которое может быть достигнут пункт назначения. Протоколы вектора расстояния обычно реализуют либо алгоритм Bellman-Ford, либо алгоритм Garcia-Luna’s DUAL, либо аналогичный алгоритм для расчета маршрутов без петель в сети. В протоколах вектора пути, путь к пункту назначения, записывается по мере того, как объявление о маршрутизации проходит через сеть, от узла к узлу. Другая информация, такая как показатели, может быть добавлена для выражения некоторой формы политики, но первичный, свободный от петель, характер каждого пути вычисляется на основе фактических путей, по которым объявления проходят через сеть. На рисунке 1 показаны эти три типа распределенных плоскостей управления. На рисунке 1: В примере состояния связи- вверху каждое устройство объявляет, что оно может достичь любе друге устройство в сети. Следовательно, A объявляет достижимость B, C и D; в то же время D объявляет достижимость 2001:db8:3e8:100::/64 и C, B и A. В примере вектора расстояния - в середине D объявляет достижимость до 2001:db8:3e8:100:: 24 до C с его локальной стоимостью, которая равна 1. C добавляет стоимость [D,C] и объявляет достижимость до 2001:db8:3e8:100::64 со стоимостью 2 до B. В примере вектора пути - внизу D объявляет о достижимости до 2001:db8:3e8:100::/24 через себя. C получает это объявление и добавляет себя к [D,C]. Плоскости управления не всегда аккуратно вписываются в ту или иную категорию, особенно когда вы переходите к различным формам сокрытия информации. Некоторые протоколы состояния канала, например, используют принципы вектора расстояния с агрегированной информацией, а протоколы вектора пути часто используют некоторую форму расположения метрик вектора расстояния для увеличения пути при вычислении loop-free путей. Эти классификации - централизованный, вектор расстояния, состояние канала и вектор пути - важны для понимания и знакомства с миром сетевой инженерии.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59