По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Системные администраторы и девопсы теперь могут использовать сетевые ресурсы, хранилища, виртуальные машины, ERP, системные программные обеспечения и приложения большинства публичных или частных облачных платформ или гибридных сред. Переход организаций к облачной среде может быть мотивирован высокой доступностью, выгодной ценой и возможностью оптимизации в реальном времени, которая возможна только в облачной среде. Но, наряду с многочисленными преимуществами, возникает необходимость мониторинга инфраструктуры и приложений, работающих в облаке. Эта статья прольет свет на мониторинг облачных платформ и предоставит вам информацию об инструментах, которые облегчат вам, как Cloud разработчику, мониторинг инфраструктуры и приложений. Мониторинг инфраструктуры и приложений Мониторинг инфраструктуры и приложений - это просто стратегия управления. Стратегия управления включает любой рабочий процесс, который оценивает вычислительные ресурсы и приложения, чтобы получить представление о производительности, работоспособности и доступности служб, работающих в любой инфраструктуре. Таким образом, мониторинг облачных сред включает наблюдение за показателями производительности веб-серверов, приложений, серверов хранения, виртуальных облачных сетей, виртуальных машин и любых других служб, работающих в облачной среде. Рассмотрим некоторые преимущества мониторинга в облаке. Учет потребления облачных ресурсов Мониторинг как услуга в облаке помогает организациям увидеть текущие ресурсы и связанные с ними затраты с помощью тэгов. Затем администраторы могут использовать данные о ресурсах для определения приоритетов и масштабирования ресурсов на основе затрат и спроса. Оптимизация производительности На основе результатов системных оповещений, событий и триггеров, настроенных для отслеживания ресурсов инфраструктуры, девопсы могут выполнять настройку ресурсов, например, балансировку нагрузки, для оптимальной работы инфраструктуры. Гарантированная безопасность системы Мониторинг пользователей в реальном времени, мониторинг входящего и исходящего трафика и частые тесты, выполняемые на конечных точках API, служат моделями безопасности для облачной инфраструктуры/приложений. Видимость означает, что любая аномалия в системе может быть легко выявлена до эскалации. Популярные средства мониторинга для разработчиков облачных сред Ниже приведены некоторые из наиболее используемых инструментов мониторинга облачных вычислений, доступных для сисадминов и девопсов. 1. CloudWatch CloudWatch, созданный Amazon, представляет собой средство наблюдения и мониторинга, предоставляющее данные/информацию о производительности системы, работе приложений и состоянии облачной инфраструктуры. Amazon CloudWatch - это инструмент для групп DevOps, инженеров по надежности сайтов и разработчиков облачных решений. Разработчики могут начать работу с CloudWatch бесплатно с помощью бесплатного тарифа. Приложения и инфраструктурные ресурсы, работающие в Amazon Cloud, генерируют рабочие данные в виде журналов, метрик и событий. Поэтому разработчики могут использовать CloudWatch для сбора и мониторинга метрик и данных журналов для измерения производительности приложений и обнаружения любых изменений инфраструктуры. CloudWatch обеспечивает отличный контроль над облачной инфраструктурой за счет упреждающего поиска и устранения неисправностей, оптимизации ресурсов, анализа журналов и сокращения среднего времени разрешения проблем. (MTTR) CloudWatch позволяет отслеживать контейнеры, экземпляры ECS, Amazon EKS и все экземпляры приложений, работающие в облачных средах. 2. Dynatrace Dynatrace - интеллектуальная платформа, обеспечивающая выполнение требований консолидации мониторинга. Инструмент основан на искусственном интеллекте и обеспечивает автоматизированное и интеллектуальное наблюдение за всей облачной инфраструктурой и приложениями. Dynatrace - инструмент мониторинга на основе агентов. OneAgent, устанавливаемый и интеллектуальный агент, который автоматизирует общесистемный мониторинг. OneAgent собирает метрики на всех уровнях стека приложений. Для мониторинга инфраструктуры OneAgent может собирать метрики из безсеверных инфраструктур, контейнеров, модулей, виртуальных компьютеров и даже облачных баз данных и многого другого. Dynatrace использует PurePath для визуализации мобильных и веб приложений на уровне кода. В результате разработчики получают представление о доступности и производительности внешних и внутренних транзакций, выполняемых в любой облачной среде. Кроме того, инструмент не только обеспечивает трассировку, метрики и данные журнала только для локальных сред. Она позволяет интегрировать несколько облачных технологий и расширить сторонние инструменты для обеспечения бесконтактного мониторинга приложений, работающих в облачных средах. Кроме того, разработчики могут использовать API Dynatrace для внедрения собранных метрик в средства отчетности и анализа сторонних производителей для более интуитивных системных отчетов. Для начала работы с Dynatrace, можно подписаться на бесплатную пробную версию и развернуть инструмент в своей среде для мониторинга всего стека. 3. DataDog Подключение Datadog к классической или облачной инфраструктуре обеспечивает детальную видимость производительности инфраструктуры и приложений. Все это можно просмотреть исчерпывающим образом: от хостов в сети до экземпляров контейнеров и даже активных процессов, выполняемых на любой инфраструктуре. Этот инструмент мониторинга имеет встроенные функции, как агент Datadog, монитор производительности приложений Datadog, диспетчер журналов Datadog и профилировщик Continuous. Встроенные инструменты отвечают за сбор метрик системы и обнаружение любых изменений в системе. Затем разработчики могут просмотреть и анализировать собранные показатели производительности с помощью гибких панелей мониторинга. Созданные панели мониторинга представляют тенденции в метриках. Например, можно просмотреть частоту ошибок облачных приложений, задержки в сетевых конечных точках, а также обслуживаемые или неуспешные запросы HTTPS. Следовательно, администраторы и разработчики облачных служб могут создавать сводки показателей на панели мониторинга для любого периода. Datadog обеспечивает интеграцию на основе агентов, аутентификации и библиотек для обеспечения унифицированного системного мониторинга в случаях распространения систем и приложений. Самой крутой особенностью Datadog является удобство, которое он дает разработчикам для выполнения синтетического мониторинга производительности приложений с помощью синтетических тестов. Синтетические тесты - это моделируемые запросы, имитирующие работу клиента с веб-службой и API для обеспечения сквозной видимости приложений. 4. Prometheus Prometheus - отличный инструмент мониторинга и оповещения с открытым исходным кодом для облачных, гибридных и готовых систем. Этот инструмент агрегирует системные метрики как данные временных рядов, многомерную модель данных, которая идентифицируется парами «имя метрики» и «ключ-значение». Например, HTTP запрос как имя метрики (ключ) и соответствующее общее количество этих запросов как значение. Prometheus работает с автономным единственным сервером Prometheus, который удаляет метрики из нескольких источников данных и сохраняет их как данные временных рядов. Кроме того, средство имеет такие платформы визуализации, как Grafana, Consoles и Expression. Для системных оповещений Prometheus использует диспетчер оповещений для гибкой отправки уведомлений и управления ими с помощью сообщений электронной почты, систем по вызову и платформ чатов, таких как Slack, где разработчики могут своевременно реагировать на возникающие системные проблемы. 5. MetricFire MetricFire - это набор инструментов с открытым исходным кодом, которые помогают системным администраторам собирать, хранить и визуализировать метрики облачной инфраструктуры. Метрики играют важную роль в определении нагрузки, надежности системы и необходимости оптимизации ресурсов. Инструмент мониторинга содержит три инструмента с открытым исходным кодом - Graphite, Prometheus и Grafana - все они работают совместно, чтобы облегчить мониторинг. Graphite, например, обрабатывает сбор метрик с помощью агента Hosted Graphite, который включает службы сбора, такие как diamond. Diamond, демон python, собирает метрики ЦП, показатели использования дисков, сетевых операций ввода-вывода, метрики веб-приложений и многое другое. Затем разработчики могут просматривать метрики в расширенных по функциям панелях мониторинга Grafana или Graphite. С помощью панелей мониторинга разработчики могут наблюдать метрики из нескольких источников, таких как Graphite, Prometheus и другого программное обеспечение для мониторинга облачных инфраструктур. Панели мониторинга Grafana отличаются высокой настраиваемостью и могут быть преобразованы в соответствии с большинством требований к визуализации. Разработчики также могут создавать сложные графики и диаграммы с несколькими метриками и трассировками для предоставления окончательных отчетов о работе систем. Благодаря размещенным инструментам разработчики могут сразу понять системные данные без необходимости установки нескольких сторонних инструментов. Заключение Итак, мы рассмотрели, что такое мониторинг облачной инфраструктуры и приложений, изучили некоторые преимущества мониторинга. Приведенные в данной статье инструменты благодаря своей гибкости и функционалу, облегчат мониторинг всей инфраструктуры. Можно развернуть и попробовать бесплатные пробные версии и выбрать подходящий под конкретные нужды.
img
Когда нужно найти какой-нибудь файл или папку в системе Linux в голову сразу приходит команда find. Она проста в использовании и имеет множество разных опций, которые позволяют оптимизировать поиск файлов. Далее приведём несколько примеров использования этой команды. Поиск папок Чтобы сделать поиск по папкам команде find нужно передать параметр type d. Таким образом мы скажем команде find вести поиск только по директориям: $ find /path/to/search -type d -name "name-of-dir" Поиск скрытых файлов Так как скрытые файлы и директории в Linux начинаются с точки, то мы можем задать шаблон поиска так, чтобы команда рекурсивно выводила нам все скрытые файлы и директории. Для этого достаточно ввести следующую команду: $ find /path/to/search -name ".*" Поиск файлов по размерам Команда find дает возможность вести поиск файлов размером больше, меньше или равным указанному значению. Чтобы найти файл размером больше 10Мб нужно ввести команду: $ find /path/to/search -size +10M Для поиска файлов размером меньше указанного значения или равного ему нужно ввести следующие команды: $ find /path/to/search -size -10M $ find /path/to/search -size 10M Также есть возможность искать файлы размер которых находится в указанном промежутке. $ find /path/to/search -size +100M -size -1G Поиск файлов по списку Допустим нам нужно найти несколько файлов, указанные в списке, который хранится в виде файла с расширением .txt. Для этого мы можем воспользоваться комбинацией команд find и grep. Чтобы данная команда работала корректно, каждый шаблона поиска в списке должен начинаться с новой строки. $ find /path/to/search | grep -f filelist.txt Парметр f переданный команде grep означает файл и даёт нам возможность указать файл с шаблонами для поиска. В результате работы вышеуказанной команды система вернёт нам все файлы, название которых указаны в списке. Найти файл, которого нет в списке Так же в системе Linux есть возможность поиска, противоположная указанному выше. То есть мы можем искать файлы, которые не указаны в списке файлов. Для этого команде grep передадим параметр vf, что означает обратное сопоставление и вернет нам файлы, названий которых не найдёт в списке шаблонов. $ find /path/to/search | grep -vf filelist.txt Указываем максимальную глубину поиска По умолчанию, команда find ищет файлы во всех директориях и поддиректориях. Допустим, если мы в качестве пути для поиска укажем корневую директорию "/", то система будет искать искомый файл по всему жесткому диску. Мы можем ограничить область поиска командой maxdepth указав ему насколько глубоко нужно искать файл. $ find . -maxdepth 0 -name "myfile.txt" Команды указанная выше говорит системе искать файл только в указанной директории. А следующая команда предписывает вести поиск в указанной директории и в одной поддиректори. $ find . -maxdepth 1 -name "myfile.txt" Поиск пустых файлов Команда find также позволяет вести поиск по пустым файлам и директориям. Для этого команде добавляем флаг empty. Следующие две команды позволяют найти пустые файли и папки. Для поиска папок к строке поиске добавляет ключ d: $ find /path/to/search -type f empty $ find /path/to/search -type d empty Так же можно автоматически удалять найденные пустые файлы или папки. Следующая команда найдет и удалит все пустые файлы в указанной папке и всех подпапках: $ find /path/to/search -type f -empty delete Поиск самого большого файла или папки Если нужно быстро определить какой файл или какая папка в системе занимает больше всего места, то команда find с соответствующими ключами позволит нам рекурсивно искать и сортировать файлы/папки по их размеру: $ find /path/to/search -type f -printf "%s %p " | sort -n | tail -1 Заметьте, что при поиске мы прибегнули к двум другим удобным инструментам Linux: sort и tail. Sort отсортирует файл по их размеру, а tail покажет самый последний файл в списке, который и будет самым большим файлом/папкой. Мы можем изменить команду так, чтобы она выводила пять самых больших файлов для этого нужно воспользоваться следующей командой: $ find /path/to/search -type f -printf "%s %p " | sort -n | tail -5
img
В качестве меры избыточности можно развернуть вместе несколько устройств ASA от Cisco в отказоустойчивой конфигурации, именуемой как реализация высокой доступности (High Availability). Для реализации данной схемы требуются абсолютно идентичные ASA, то есть чтобы устройства имели идентичное программное обеспечение, лицензирование, память и интерфейсы. Существует три возможных варианта реализации схемы High Availability для защиты от простоев. Реализация отказоустойчивости Active/Standby: в этой модели только один из брандмауэров отвечает за обработку трафика, в то время как другой становиться "горячим" резервным устройством. Резервное устройство начинает обработку трафика в случае сбоя активного устройства. Реализация отказоустойчивости Active/Active: в этой модели оба брандмауэра активно обрабатывают трафик как кластер. При выходе из строя одного из устройств, сеть будет продолжать нормально функционировать, так как они имеют одинаковые (дублирующие) настройки. Данная реализация чуть сложнее и требует использования нескольких контекстных режимов. В режиме множественного контекста можно разделить одно устройство ASA на несколько виртуальных, известных как контексты безопасности. Каждый контекст безопасности действует как независимое устройство со своими собственными политиками, интерфейсами и администраторами. Поэтому несколько контекстов представляются как отдельные автономные устройства. Для реализации отказоустойчивости Active/Active используются два физических брандмауэра. На каждом из этих брандмауэров настраивается несколько виртуальных брандмауэров или контекстов безопасности. В примере выше в ASA 1 настраиваются контекст безопасности 1 и контекст безопасности 2. Аналогично настраивается и ASA 2: Следующий шаг состоит в том, чтобы взять виртуальные контексты безопасности и разделить их на отказоустойчивые группы. Отказоустойчивая группа- это просто логическая группа одного или нескольких контекстов безопасности. Аса-1 определена в качестве основного устройства, активной для отказоустойчивой группы 1. Аналогично, ASA 2 определена как вторичное устройство, активное для отказоустойчивой группы 2. Контексты безопасности разделяются и назначаются следующим образом: ASA 1: Контекст безопасности 1 Назначена отказоустойчивая группа 1 Контекст безопасности 2 Назначена отказоустойчивая группа 2 ASA 2: Контекст безопасности 1 Назначена отказоустойчивая группа 2 Контекст безопасности 2 Назначена отказоустойчивая группа 1 Нагрузка распределяется таким образом, что обе ASA активны. Таким образом достигается избыточность. Реализация отказоустойчивого кластера: это объединение нескольких ASA в кластеры, действующих как единое логическое устройство. Интеграция и управление по-прежнему работают так, как если бы это было единое устройство, но кластеризация обеспечивает более высокую пропускную способность и избыточность. Это работает в модели slave/master аналогично тому, как работает массив RAID- дисков. Если одно устройство ASA, входящее в кластер, выходит из строя, другое берет на себя операции до тех пор, пока не будет заменен отказавший брандмауэр. Интерфейсы соединяются с двумя различными коммутаторами, причем виртуальный канал порта соединяет коммутаторы вместе. Это должно быть сделано как на внутренней, так и на внешней зонах безопасности.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59