По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
OpenNMS - бесплатный, расширяемый, легко масштабируемый продукт уровня предприятия с открытым исходным кодом. Он проверяет состояние удалённых устройств и собирает информацию об этих хостах при помощи SNMP и JMX (Java Management Extensions). Система основана на Java поэтому поддерживает все популярные операционные системы. OpenNMS работает под управлением таких операционных систем, как Linux и Windows и поставляется с веб-консолью для упрощения добавления сетевых устройств и приложений в систему. Вся информация, введенная в систему, хранится в базе данных Postgres. Системные требования OpenNMS Debian 9.0 и выше, Ubuntu 16.04 LTS и выше; Пакет OpenJDK 11 Development Kit; 2 CPU, 2 Гб RAM, 20 Гб жесткого диска. В этом материале покажем, как устанавливать свежую версию системы мониторинга OpenNMS Horizont на Debian и Ubuntu. Шаг 1. Развертывание Java-OpenJDK 11 на Ubuntu Для начала скачает свежую версию OpenJDK Java 11 при помощи следующей команды: $ sudo apt-get install openjdk-11-jdk Затем убеждаемся, что установлена самая последняя версия Java $ java -version После этого устанавливаем переменную среду для всех пользователей при загрузке. Чтобы сделать это нужно добавить в файл /etc/profile следующие строки. export JAVA_HOME=/usr/lib/jvm/java-1.11.0-openjdk-amd64 Сохраняем файл и выполняем следующую команду, чтобы система заново прочитала файл /etc/profile. $ source /etc/profile Шаг 2. Установка OpenNMS Horizon на Ubuntu Чтобы развернуть OpenNMS Horizon, в файл /etc/apt/sources.list.d/opennms.list следует добавить репозиторий и GPG ключ, а затем обновить кеш apt командой ниже: $ cat EOF | sudo tee /etc/apt/sources.list.d/opennms.list deb https://debian.opennms.org stable main deb-src https://debian.opennms.org stable main EOF $ wget -O - https://debian.opennms.org/OPENNMS-GPG-KEY | apt-key add - $ apt update Далее скачиваем мета-пакеты OpenNMS (opennms-core и opennms-webapp-jetty) со всеми зависимостями (jicmp6 и jicmp, postgresql и postgresql-libs). $ sudo apt install opennms Затем с помощью утилиты tree, проверяем, что мета-пакеты OpenNMS установлены в директорию /usr/share/opennms $ cd /usr/share/opennms $ tree -L 1 На заметку: Чтобы предотвратить внеплановые обновления, после установки рекомендуется отключить репозиторий OpenNMS $ sudo apt-mark hold libopennms-java libopennmsdeps-java opennms-common opennms-db Шаг 3. Инициализация и установка PostgreSQL В Debian и Ubuntu сразу после установки пакетов программа установки определяет базу данных Postgres, запускает службу и добавляет его в автозапуск при старте системы. Чтобы проверить, работает ли служба, выполните указанную ниже команду: $ sudo systemctl status postgresql Далее делаем вход под пользователем postgre и создаём пользователя opennms и задаем пароль. $ sudo su - postgres $ createuser -P opennms $ createdb -O opennms opennms А теперь в целях безопасности назначим пользователю postgres пароль: $ psql -c "ALTER USER postgres WITH PASSWORD 'YOUR-POSTGRES-PASSWORD';" На данном этапе следует настроить доступ OpenNMS Horizon к базе данных. Для этого редактируем файл конфигурации. $ sudo vim /usr/share/opennms/etc/opennms-datasources.xml Найдите в данном файле указанные ниже разделы и введите учетные данные jdbc-data-source name="opennms" database-name="opennms" class-name="org.postgresql.Driver" url="jdbc:postgresql://localhost:5432/opennms" user-name="opennms-db-username" password="opennms-db-user-passwd" / jdbc-data-source name="opennms-admin" database-name="template1" class-name="org.postgresql.Driver" url="jdbc:postgresql://localhost:5432/template1" user-name="postgres" password="postgres-super-user-passwd" / Сохраните изменения и закройте файл. Шаг 4. Инициализация и запуск OpenNMS Horizon Чтобы инициализировать OpenNMS, необходимо интегрировать его с Java. Итак, для обнаружения среды Java и добавления её в файл конфигурации /usr/share/opennms/etc/java.conf выполните следующую команду: $ sudo /usr/share/opennms/bin/runjava -s Затем, следует проинициализировать базу данных и найти библиотеки, указанные в файле /opt/opennms/etc/libraries.properties, с помощью следующей команды: $ sudo /usr/share/opennms/bin/install -dis После этого запускаем службу OpenNMS используя systemd, затем добавляем её в автозапуск и проверяем статус следующими командами: $ sudo systemctl start opennms $ sudo systemctl enable opennms $ sudo systemctl status opennms Если в системе установлен межсетевой экран ufw, следует открыть порт 8980 $ sudo ufw allow 8980/tcp $ sudo ufw reload Шаг 5. Подключение к веб-консоли OpenNMS Теперь запускаем любимый браузер и открываем страницу веб-консоли OpenNMS. http://SERVER_IP:8980/opennms или http://FDQN-OF-YOUR-SERVER:8980/opennms Далее для входа в систему вводим логин и пароль по умолчанию - admin/admin После этого вы попадете в панели администратора В целях безопасности следует поменять предустановленный пароль администратора. Для этого переходим на панели меню выбираем "admin → Change Password", в разделе "User account self-service" нажимаем "Change Password". Вводим текущий пароль, новый пароль и подтверждаем его, затем нажимаем "Submit". После этого выходим из системы и заходим в нее с новым паролем. А теперь, время изучать, детальные настройки системы и тонкости управления OpenNMS Horizon через веб-интерфейс, добавлять узлы и приложения, согласно Руководству Администратора OpenNMS.
img
В статье рассматриваются примеры протоколов, обеспечивающих Interlayer Discovery и назначение адресов. Первую часть статьи про Interlayer Discovery можно прочитать тут. Domain Name System DNS сопоставляет между собой человекочитаемые символьные строки, такие как имя service1. exemple, используемый на рисунке 1, для IP-адресов. На рисунке 3 показана основная работа системы DNS. На рисунке 3, предполагая, что нет никаких кэшей любого вида (таким образом, весь процесс проиллюстрирован): Хост A пытается подключиться к www.service1.example. Операционная система хоста проверяет свою локальную конфигурацию на предмет адреса DNS-сервера, который она должна запросить, чтобы определить, где расположена эта служба, и находит адрес рекурсивного сервера. Приложение DNS операционной системы хоста отправляет DNS-запрос на этот адрес. Рекурсивный сервер получает этот запрос и - при отсутствии кешей - проверяет доменное имя, для которого запрашивается адрес. Рекурсивный сервер отмечает, что правая часть имени домена именуется example, поэтому он спрашивает корневой сервер, где найти информацию о домене example. Корневой сервер возвращает адрес сервера, содержащий информацию о домене верхнего уровня (TLD) example. Рекурсивный сервер теперь запрашивает информацию о том, с каким сервером следует связаться по поводу service1.example. Рекурсивный сервер проходит через доменное имя по одному разделу за раз, используя информацию, обнаруженную в разделе имени справа, чтобы определить, какой сервер следует запросить об информации слева. Этот процесс называется рекурсией через доменное имя; следовательно, сервер называется рекурсивным сервером. Сервер TLD возвращает адрес полномочного сервера для service1.example. Если информация о местонахождении службы была кэширована из предыдущего запроса, она возвращается как неавторизованный ответ; если фактический сервер настроен для хранения информации об ответах домена, его ответ является авторитетным. Рекурсивный сервер запрашивает информацию о www.service1.example у полномочного сервера. Авторитетный сервер отвечает IP-адресом сервера B. Рекурсивный сервер теперь отвечает хосту A, сообщая правильную информацию для доступа к запрошенной службе. Хост A связывается с сервером, на котором работает www.service1.example, по IP-адресу 2001:db8:3e8:100::1. Этот процесс может показаться очень затяжным; например, почему бы просто не сохранить всю информацию на корневом сервере, чтобы сократить количество шагов? Однако это нарушит основную идею DNS, которая заключается в том, чтобы держать информацию о каждом домене под контролем владельца домена в максимально возможной степени. Кроме того, это сделало бы создание и обслуживание корневых серверов очень дорогими, поскольку они должны были бы иметь возможность хранить миллионы записей и отвечать на сотни миллионов запросов информации DNS каждый день. Разделение информации позволяет каждому владельцу контролировать свои данные и позволяет масштабировать систему DNS. Обычно информация, возвращаемая в процессе запроса DNS, кэшируется каждым сервером на этом пути, поэтому сопоставление не нужно запрашивать каждый раз, когда хосту необходимо достичь нового сервера. Как обслуживаются эти таблицы DNS? Обычно это ручная работа владельцев доменов и доменов верхнего уровня, а также пограничных провайдеров по всему миру. DNS не определяет автоматически имя каждого объекта, подключенного к сети, и адрес каждого из них. DNS объединяет базу данных, обслуживаемую вручную, с распределением работы между людьми, с протоколом, используемым для запроса базы данных; следовательно, DNS попадает в базу данных сопоставления с классом протоколов решений. Как хост узнает, какой DNS-сервер запрашивать? Эта информация либо настраивается вручную, либо изучается с помощью протокола обнаружения, такого как IPv6 ND или DHCP. DHCP Когда хост (или какое-либо другое устройство) впервые подключается к сети, как он узнает, какой IPv6-адрес (или набор IPv6-адресов) назначить локальному интерфейсу? Одним из решений этой проблемы является отправка хостом запроса в какую-либо базу данных, чтобы определить, какие адреса он должен использовать, например DHCPv6. Чтобы понять DHCPv6, важно начать с концепции link local address в IPv6. При обсуждении размера адресного пространства IPv6, fe80:: / 10 был назван зарезервированным для link local address. Чтобы сформировать link local address, устройство с IPv6 объединяет префикс fe80:: с MAC (или физическим) адресом, который часто форматируется как адрес EUI-48, а иногда как адрес EUI-64. Например: Устройство имеет интерфейс с адресом EUI-48 01-23-45-67-89-ab. Этот интерфейс подключен к сети IPv6. Устройство может назначить fe80 :: 123: 4567: 89ab в качестве link local address и использовать этот адрес для связи с другими устройствами только в этом сегменте. Это пример вычисления одного идентификатора из другого. После того, как link local address сформирован, DHCP6 является одним из методов, который можно использовать для получения уникального адреса в сети (или глобально, в зависимости от конфигурации сети). DHCPv6 использует User Datagram Protocol (UDP) на транспортном уровне. Рисунок 4 иллюстрирует это. Хост, который только что подключился к сети, A, отправляет сообщение с запросом. Это сообщение поступает с link local address и отправляется на multicast address ff02 :: 1: 2, порты UDP 547 (для сервера) и 546 (для клиента), поэтому каждое устройство, подключенное к одному и тому же физическому проводу, получит сообщение. Это сообщение будет включать уникальный идентификатор DHCP (DUID), который формирует клиент и использует сервер, чтобы обеспечить постоянную связь с одним и тем же устройством. B и C, оба из которых настроены для работы в качестве серверов DHCPv6, отвечают рекламным сообщением. Это сообщение является одноадресным пакетом, направленным самому A с использованием link local address, из которого A отправляет запрашиваемое сообщение. Хост A выбирает один из двух серверов, с которого запрашивать адрес. Хост отправляет запрос на multicast address ff02 :: 1: 2, прося B предоставить ему адрес (или пул адресов), информацию о том, какой DNS-сервер использовать, и т. д. Сервер, работающий на B, затем отвечает ответом на изначально сформированный link local address A; это подтверждает, что B выделил ресурсы из своего локального пула, и позволяет A начать их использование. Что произойдет, если ни одно устройство в сегменте не настроено как сервер DHCPv6? Например, на рисунке 4, что, если D - единственный доступный сервер DHCPv6, потому что DHCPv6 не работает на B или C? В этом случае маршрутизатор (или даже какой-либо другой хост или устройство) может действовать как ретранслятор DHCPv6. Пакеты DHCPv6, которые передает A, будут приняты ретранслятором, инкапсулированы и переданы на сервер DHCPv6 для обработки. Примечание. Описанный здесь процесс называется DHCP с отслеживанием состояния и обычно запускается, когда в объявлении маршрутизатора установлен бит Managed. DHCPv6 может также работать с SLAAC, для предоставления информации, которую SLAAC не предоставляет в режиме DHCPv6 без сохранения состояния. Этот режим обычно используется, когда в объявлении маршрутизатора установлен бит Other. В тех случаях, когда сетевой администратор знает, что все адреса IPv6 будут настроены через DHCPv6, и только один сервер DHCPv6 будет доступен в каждом сегменте, сообщения с объявлением и запросом можно пропустить, включив быстрое принятие DHCPv6. А теперь почитайте про Address Resolution Protocol - протокол разрешения IPv4-адресов
img
В нашей базе знаний достаточно много статей касаемо установки и настройки FreePBX, поэтому вы наверняка неоднократно натыкались на скриншоты Dashboard в FreePBX – окна, содержащего в себе сводку по всем сервисам, службам и «железным» характеристикам сервера АТС – в сегодняшней статье мы расскажем как установить похожий дэшборд абсолютно на любой сервер – в нашем примере мы будем его ставить на CentOS 6. Установка Для начала обновим все пакеты с помощью командыyum update, а затем установим Apache, PHP и git пакеты: yum -y install httpd git php php-json php-xml php-common Далее включим и запустим сервис httpd командами: systemctl start httpd systemctl enable httpd Следующим шагом необходимо скачать сам дэшборд с помощью git, но для этого необходимо сначала сменить рабочую директорию на /var/www/html с помощью команды cd /var/www/html. После смены директории вводим команду для скачивания - git clone https://github.com/afaqurk/linux-dash.git - в общем и целом, почти всё готово для запуска. Запуск Теперь перезагружаем сервис httpd с помощью команды service httpd restart и пробуем зайти по следующему адресу: http://адрес_вашего_сервера/linux-dash Если всё прошло успешно – у вас должен запуститься веб-интерфейс следующего вида, как на скриншоте ниже: Обратите внимание, что есть 5 вкладок: System Status - информация о загруженности оперативной памяти, CPU и так далее; Basic Info - общая информация о сервере; Network - информация о сетевых интерфейсах; Accounts - информация об аккаунтах пользователей; Apps - описание используемых приложений; Данное приложение находится в процессе постоянной доработки разработчиком, поэтому вы всегда можете обратиться к нему напрямую через GitHub.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59