По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Примечание: в статье рассматривается управление уже установленным и настроенным оборудованием. Мне на работе достались два работающих SDH мультиплексора Huawei уровня STM-4 (622 Мбит/c). Система мониторинга и управления уже была настроена, и я осваивал ее "как есть". Краткое описание ПО для конфигурирования Для работы с оборудованием на рабочей станции, подключенной к интерфейсу управления мультиплексором, я запускаю две программы IManager T2000LCT-Server и IManager T2000LCT-Client, в которой и произвожу работы по конфигурированию. Для запуска ПО требуется данные о логине и пароле. При запуске клиента отображается окно, в котором приведен список всех сконфигурированных мультиплексоров, их наименования, состояние подключения к ним и уровень текущих аварий. На приведенном скриншоте оборудование, к которому непосредственно подключен ПК управления, имеет значение в столбце Gateway GNE, а мультиплексор, доступ к которому настроен через канал связи в тракте STM (то есть тот, который территориально расположен в другом месте и доступен удаленно), имеет значение Gateway Non-GNE. В столбце Login отображается статус "Not Login", а в столбце Communication состояние "Communication Interruption". Это означает, что оператор не авторизован в оборудовании, так как с ним нет. В таком состоянии можно просматривать конфигурацию, которая была в мультиплексорах во время последнего подключения, но текущие параметры посмотреть не получится, как и внести какие-либо изменения. Выбрав из списка необходимый мультиплексор, нажимаем внизу кнопку "NE Explorer" и попадаем в интерфейс управления конкретной единицы оборудования. Здесь мы увидим список всех установленных плат и их состояние в окошке слева вверху, а также функции, доступные для выделенной платы, в окошке слева внизу. Если выделить корень дерева оборудования (Рис.3), то получаем список функций, применимый ко всему мультиплексору (функции мультиплексора и его плат не пересекаются). Общий вид оборудования и наименование установленных плат можно посмотреть непосредственно в интерфейсе управления, нажав на иконку <Slot Layot>: Типы плат (для мультиплексора Huawei OSN1500): Модуль вентиляторов FAN Платы Q1SL4 плата линейного интерфейса STM-4. Сюда подключается оптика, которая соединяет оборудование с другим мультиплексором. Платы ECXL плата, отвечающая за кросс-коннект (коммутацию) Платы GSCC плата управления и мониторинга всем мультиплексором Модули питания PIU Платы D12S интерфейсная плата 120 ом портов E1 (32 порта) Плата AUX плата вспомогательных интерфейсов (служебный телефон, порт RS-232) Плата PQ1 интерфейсная плата портов E1. Позволяет вывести 63 потока E1. Плата N1EFS4 интерфейсная плата портов Ethernet. На плате 4 порта. Типы плат (для мультиплексора Huawei Metro 1000): Плата OI4 Плата линейного интерфейса STM-4 (для соединения с другим мультиплексором) Плата EFS интерфейсная плата портов Ethernet, содержит 4 порта FE 10/100Mb Плата SP2D интерфейсная плата портов E1, может вывести 16 потоков Плата PD2T интерфейсная плата портов E1, выводит 48 потоков Плата X42 модуль кросс-коннекта Плата STG модуль синхронизации и генератора синхросигнала Плата SCC модуль управления и мониторинга всего оборудования Плата OHP2 модуль обработки заголовков Подсказка по функционалу платы отображается внизу окошка общего вида оборудования (показано выше) при выделении какой-либо платы. Конфигурирование потоков E1 Для того, чтобы прописать в оборудовании новый поток уровня E1, откроем один из мультиплексоров, выделим корень дерева оборудования, в дереве функций откроем пункт "Configuration" и в раскрывшемся списке "SDH Service Configuration" (Рис.6) В открывшемся окне отображается список существующих соединений (кросс-коннекты), а также кнопки с возможными действиями в этом окне. Описание столбцов списка кросс-коннектов: Level уровень кросс-коннекта. Здесь мы можем указать тип виртуального контейнера и, соответственно, пропускную способность, которую выделено под данное соединение (а точнее, кратность пропускной способности). То есть, если выбран уровень VC12, то скорость будет кратна 2 Мбит/с. Если выбрать VC4, то скорость будет кратна 155 Мбит/с (это контейнер уровня STM-1, то есть мы займем целиком 1 STM-1 из 4-трактов STM-4. Type тип соединения, обозначен графическим символом, указывающим, что данное соединения является вводом-выводом (например, вывод на интерфейс E1) или проходным (например, с платы линейного интерфейса на плату интерфейсов Ethernet). Source Slot слот и плата источника кросс-коннекта. Source Timeslot/Path таймслот (порт) источника. Sink Slot - слот и плата точки назначения кросс-коннекта. Sink Timeslot/Path - таймслот (порт) точки назначения. Activation Status статус активации соединения. При создании соединения, оно может быть активировано сразу или позже, после завершения работ по подключению, чтобы избежать появления ложных аварий в системе мониторинга. Так же соединение можно активировать/деактивировать по необходимости в данном окне с помощью соответствующих кнопок. Для создания нового соединения нажмем кнопку <Create> и увидим следующее окно, в котором задаются все вышеперечисленные параметры: В появившемся окошке указываем: Level VC12 Direction (направление) оставляем Bidirectional (то есть, двунаправленное соединение) Source Slot плату-источник. Выбираем плату линейного интерфейса, который соединен с мультиплексором на другой стороне Source VC4 выбираем один из 4-х контейнеров VC4 в тракте STM-4. Source Timeslot Range диапазон таймслотов источника. Здесь оборудование позволяет выбрать несколько тайм-слотов. Это удобно в случае, если нам необходимо создать одновременно несколько соединений между одними и теми же точками. Например, нам необходимо прокинуть 4 потока E1 между данными мультиплексорами. В таком случае, мы зададим 4 таймслота при создании соединения в каждом мультиплексоре. Таким же образом задаются слот (плата) и таймслоты и пункта назначения. В некоторых случаях, для задания путей источника и назначения удобнее будет воспользоваться графическим типом задания параметров. Для этого в полях Source Slot или Sink Slot нажимаем на кнопку с многоточием (Рис.8): В открывшемся окошке мы наглядно можем выбрать плату (2), порт на плате (3), контейнер верхнего уровня в нашем случае, один из четырех VC4 (4) и ниже один или несколько виртуальных контейнеров нижнего уровня VC12. Неактивная кнопка виртуального контейнера означает, что он уже занят. После выбора и закрытия данного окошка, возвращаемся в окно "Create SDH Service", которое мы открыли для создания нового кросс-коннекта. Осталось задать параметр Activate Immediately. При выборе Yes соединение должно быть сразу активным, иначе его нужно активировать вручную. Следует отметить, что иногда данная настройка не применяется, поэтому, после создания соединения, рекомендуется проверить значение поля Activation Status и нажать кнопку Activate в окне списка соединений. После нажатия кнопки ОК наше соединение создано в одном из мультиплексоров. Далее, нам необходимо зайти в оборудование на другом конце линейного тракта (оптического кабеля), и создать такое же соединение, указав в пути источника те же VC4 и VC12, что и на этой стороне. Некоторые настройки портов E1 В главном окне программы управления (верхнее левое окошко), если в дереве оборудования выбрать какую-то плату, то в дереве функций мы получаем доступ к настройкам самой платы. Например, выберем интерфейсную плату портов E1 и откроем ее свойства: Данное окно позволяет изменять некоторые свойства портов. В частности, в поле "Port Name" можно указать произвольное название для порта. Это никак не влияет на работу самого порта, однако улучшает читаемость событий и аварий, которые выдает порт в общем списке событий. Еще одним важным параметром, который облегчает работу при организации или тестировании потоков E1, является "Tributary Loopback". Двойной щелчок в этом поле открывает варианты постановки петли или "заворота" на порту: "Inloop" и "Outloop" - один из которых заворот во внутрь, а другой заворот в сторону подключенного внешнего оборудования. Конфигурирование портов Ethernet Пропуск портов Ethernet выполняется в несколько этапов. Выполняем кросс-коннект тайм-слотов с платы линейных интерфейсов (Q1SL4) на плату интерфейсов Ethernet (N1EFS4). Выполняем кросс-коннект занятых в предыдущем пункте тайм-слотов в внутренний интерфейс VCTRUNK# платы N1EFS4 (всего на плате 12 VCTRUNK) Прописываем на плате N1EFS4 VLAN’ы от VCTRUNK# до физического порта (на плате 4 физических порта) Первый пункт действий выполняется аналогично настройке портов E1, порядок приведен выше. Кросс-коннект виртуальных контейнеров на внутренние интерфейсы платы N1EFS4 В настройках платы N1EFS4 открываем раздел Configuration Ethernet Interface Management Ethernet Interface. В открывшемся окне выбираем Internal port и вкладку Bound Path, здесь нажимаем кнопку Configuration. В появившемся окне выбираем один из внутренних интерфейсов VCTRUNK, и виртуальные контейнеры, которые будут в него включаться: Нажимаем Ок, и сконфигурированный интерфейс появляется в нашем списке. В графе "Bound Paths" мы видим задействованные виртуальные контейнеры, а в графе "Number of Bound Paths" - их общее количество. На вкладке "TAG Attribute" списка внутренних интерфейсов настраивается режим порта: Access не тегированный порт Tag Aware тегированный порт Hybrid гибридный порт Теперь осталось соединить внутренний порт VCTRUNK# с одним из четырех внешних физических портов, прокинув VLAN между этими портами. Прописываем на плате N1EFS4 VLAN’ы от VCTRUNK# до физического порта В настройках платы N1EFS4 открываем раздел Configuration Ethernet Service Ethernet Line Service. В открывшемся окне нажимаем кнопку New. В открывшемся окне указываем порт источник VCTRUNK# и порт назначения например, PORT1. А также укажем VLAN-источник и VLAN назначения (автоматически выставляется один и тот же) В этом же окошке, в разделе Port Attributes есть возможность выбрать режимы для обоих портов (тегированный, не тегированный, гибридный). Следует отметить, что система не будет следить за корректностью режимов и соответствием количества тайм-слотов в соединениях цепочки, как на коммутаторах передачи данных, так что за этим следует следить оператору. Так же в данном окне доступно меню конфигурирования внутренних интерфейсов платы N1EFS4, которое описано в предыдущем подразделе. На этом конфигурирование портов Ethernet на мультиплексоре Huawei OSN1500/Metro1000 окончено. Следует еще раз заметить, что на противоположной стороне (на другом мультиплексоре) настройки кросс-коннекта должны быть аналогичны.
img
Если вы работаете в IT, то наверняка тысячу раз сталкивались с необходимостью зайти на какое-то устройство или сервер удалённо – такая задача может быть выполнена несколькими путями, основные два для управления устройством через командную строку – Telnet и Secure Shell (SSH) . Между ними есть одно основное различие – в протоколе Telnet все данные передаются по сети в незашифрованном виде, а в случае SSH все команды шифруются специальным ключом. SSH был разработан как замена Telnet, для безопасного управления сетевыми устройствами через небезопасную сеть, такую как Интернет. На всякий случай запомните, что Telnet использует порт 22, а SSH – 23. Поэтому наша рекомендация – используйте SSH всегда, когда возможно. Настройка Для начала, вам понадобится Packet Tracer – программа для эмуляции сетей от компании Cisco. Он полностью бесплатен и его можно скачать с сайта netacad.com после регистрации. Запустите Packet Tracer и приступим к настройке. Постройте топологию как на скриншоте ниже – один компьютер и один коммутатор третьего уровня. Нужно будет подключить их между собой и приступить к настройке. Готово? Теперь обеспечим сетевую связность и настроим интерфейс vlan 1 на коммутаторе, для этого введите следующие команды: Если сразу после создания в консоли коммутатора будет вопрос начать ли диалог изначальной настройки – ответьте «No». en conf t interface vlan 1 ip address 192.168.1.1 255.255.255.0 no shutdown Далее, настроим сетевую карту компьютера – укажем сетевой адрес в настройках FastEthernet0: 192.168.1.2. По умолчанию все новые компьютеры будут находиться в vlan 1. Теперь давайте попробуем пингануть коммутатор и зайти на него по протоколу telnet с нашего ПК на коммутатор – и вы увидите, что соединение будет отклонено по причине того, что мы еще не настроили аутентификацию на коммутаторе. Перейдем к настройке аутентификации. Система поддерживает 20 виртуальных tty/vty линий для Telnet, SSH и FTP сервисов. Каждая сессия, использующая вышеупомянутый протокол занимает одну линию. Также можно усилить общую безопасность с помощью валидации запросов на авторизацию на устройстве. Перейдите обратно в режим общей конфигурации (conf t) на коммутаторе с помощью команды exit и введите следующие команды: line vty 0 15 password cisco login end Пароль cisco, используемый в статье, является крайне небезопасным и служит исключительно для демонстрационных целей. Если вы оставите такой пароль на настоящем оборудовании, шансы, что вас взломают будут стремиться к бесконечности. Лучше используйте наш генератор устойчивых ко взлому паролей :) Теперь снова попробуйте зайти по Telnet на свитч – все должно получиться! Однако, при попытке перейти к настройке и выполнении команды enable вы увидите, что это невозможно, по причине того, что не установлен пароль на глобальный режи enable. Чтобы исправить это, введите следующие команды: conf t enable password cisco Попробуйте еще раз – теперь все должно получиться! Теперь настроим SSH на коммутаторе – для этого обязательно нужно указать хостнейм, доменное имя и сгенерировать ключ шифрования. Вводим следующие команды (из основного конфигурационного режима): hostname merionet_sw1 ip domain name merionet crypto key generate rsa Выбираем длину ключа – по умолчанию значение стоит равным 512 битам, для SSH версии 2 минимальная длина составляет 768 бит. Генерация ключа займет некоторое время. После генерации ключа продолжим настройку коммутатора: ip ssh version 2 line vty 0 15 transport input ssh Теперь зайти по протоколу Telnet уже не выйдет, так как мы заменили его на SSH. Попробуйте зайти по ssh, используя логин по умолчанию – admin. Давайте-ка поменяем его на что-то поприличнее (опять из conf t): username admin secret cisco line vty 0 15 login local do wr Теперь попробуйте зайти с рабочей станции на коммутатор и удостоверьтесь, что новые настройки вступили в силу.
img
Мир VoIP (Voice over IP) многогранен. На рынке существует целое множество решений для построения корпоративных систем связи – IP – АТС. Нас интересуют программные «open source» решения, поэтому, сегодня мы сравним две популярные телефонные платформы и ответим на вопрос: что круче, FreeSWITCH или Asterisk? :) Про Asterisk Давайте немного теории: Asterisk - программная автоматическая телефонная станция (АТС) на базе протокола IP, которая способна предложить богатый, с точки зрения телефонии, инструментарий для офиса. Asterisk, будучи одной из первых программных IP-АТС был создан в 1999 году как решение с открытым кодом (open source). При поддержке компании Digium в 2005 году IP – АТС увидела свет и была выпущена в «продакшн». Реализация происходит под двумя лицензиями: GNU GPL (General Public License) и патентная лицензия для разработки собственных решений на базе Asterisk, рассчитанных на дальнейшую продажу. Более миллиона пользователь радуются IP – АТС Asterisk каждый день по всему миру :) Но не все так гладко (удар молнии за окном). Исторически, Asterisk имеет ряд проблем, связанных с масштабируемостью, нестабильностью работы при повышении нагрузки. С учетом особенностей лицензирования, многие пользователи (в том числе компании - разработчики) искали новый продукт. Про FreeSWITCH В 2006 году группа бывших разработчиков Asterisk приняли решение разработать альтернативное решение – на свет появился FreeSWITCH. Вдохновленные модульной структурой веб – сервера Apache, команда разработчиков преследовала цель улучшить параметры масштабируемости и стабильности работы на разных платформах. FreeSWITCH создан по модели состояний, вследствие чего, каждый вызов(канал) работает по отдельному потоку данных. Для построения структуры, использовались компоненты open – source решений, такие как, например, Sofia SIP – SIP UA с открытым исходным кодом, созданный компанией Nokia. Что под капотом? Asterisk – модульная структура. Во время работы, Asterisk использует общие ресурсы, включая программные потоки – это главная проблема при большой интенсивности вызовов. Несмотря на сложность и многогранность программного кода, на котором написан Asterisk, он находит огромное множество применений в сети. С другой стороны, FreeSWITCH написан на C, структура которого более понятна и прозрачна. Потоки процессов выполняются последовательно и отдельно для каждого канала, что безусловно отличает Фрисвитч от Asterisk. При этом, как правило, по этой причине FreeSWITCH требует больший объем оперативной памяти (RAM) Отметим, что FreeSWITCH имеет хорошо документированный API (Application Programming Interface), сегментированный по ролям. Такая структура обеспечивает безопасное подключение к API в отличие от Asterisk, где более открытая конструкция API допускает вероятность внесения багов и ошибок. Asterisk базируется на текстовых конфигурационных файлах, в то время как FreeSWITCH использует файлы формата .xml. Безусловно, с точки зрения работы с конфигами для админа, файлы текстового формата проще редактировать, однако, плюсы формата .xml всплывают на этапе автоматизации различных процессов. Требования к железу Оценить общие требования к IP – АТС достаточно сложно, так как в каждой инсталляции используется разный набор фичей и целей эксплуатации. Однако, в таблице ниже сконцентрированы минимальные требования к серверу, на котором будет развернут Asterisk и FreeSWITCH для работы 15 телефонными аппаратами и 5 одновременными вызовами. Сравните их: Параметр FreeSWITCH Asterisk CPU Одно ядро, частота процессор 1 гГц Одно ядро, частота процессор 700 мГц RAM 1 ГБ 512 МБ HDD 10 ГБ 10 ГБ OS Linux, 32/64 бит Linux, 64 бит Как видно, FreeSWITCH потребляет больше RAM. О причине этого мы писали ранее – это связано с архитектурой. Функционал С точки зрения базового набора функций, АТС идентичны. Голосовая почты, IVR, маршрутизация, intercom и другие опции доступны для обоих лагерей пользователей. Рассмотрим преимущества, которые интересны для профессионального и более глубокого использования платформ. Начнем, пожалуй, с возможности FreeSWITCH создавать мульти – площадки. Фрисвич нативно (из коробки) умеет сегментировать площадки пользователей, разные домены и суб – домены. Это означает, что пользователи одной площадки не смогут дозвониться до пользователей другой по внутренним номерам. Другими словами, обеспечивается полнофункциональная сегрегация пользователей. Так же, безусловным преимуществом FreeSWITCH стоит отметить возможность кластеризации (объединения нескольких серверов), где каждый хост в кластере будет выполнять свою определенную роль. Итог Подведем итоги. Мы составили таблицу с результатами, чтобы вам было проще ориентироваться: Функция FreeSWITCH Asterisk Малое потребление ресурсов сервера, включая ресурсы процессора и оперативной памяти ✕ ✓ Документация и поддержка: решение проблем, форму, гайды, сильное комьюнити проекта ✕ ✓ Богатый базовый функционал: конференции, видеозвонки, IVR, голосовая почта и так далее ✓ ✓ Возможность реализации функций мульти - площадок (поддержка отдельных телефонных доменов с полной сегрегацией пользователей) ✓ ✕ Внутренние механизмы устойчивости к повышению нагрузки, связанной с повышением количества одновременных вызовов ✓ ✕ Объединение серверов в кластер, с последующим разделением ролей ✓ ✕
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59