По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Всем привет! В этой статье мы расскажем, что такое Call Park в Cisco Unified Communications Manager (CUCM) , и как его настроить. Функция Call Park позволяет абоненту временно удержать вызов, поместив его в так называемый Call Park слот, чтобы потом другой абонент в системе CUCM смог его забрать (извлечь из слота). Например, вам звонит клиент и спрашивает о продукте, которым занимается другой отдел. В этом случае вы можете запарковать вызов, связаться с коллегой из другого отдела и сказать, чтобы он перехватил вызов, набрав Call Park номер. На каждый Call Park номер можно запарковать один звонок. Есть другой тип этой функции, который называется Directed Call Park, где для перехвата вызова необходимо ввести префикс код. Настройка Call Park В Call Manager Administration переходим во вкладку Call Routing → Call Park и для создания нажимаем Add New. В строке Call Park Number/Range нужно указать номе или диапазон номеров, которые будут использоваться для парковки. Если указываем диапазон номеров, то можно использовать wildcard символы, которые используются в Route Pattern (например, если нам нужно значение номера с 8880 по 8889, то указываем 888X). Затем в строке Cisco Unified Communications Manager из выпадающего меню выбираем желаемый сервер. Если Call Park настраивается на нескольких серверах, то необходимо убедиться что диапазоны номеров не пересекаются между серверами. После настройки нажимаем кнопку Save. Для настройки Directed Call Park нужно произвести похожие действия. Переходим во вкладку Call Routing → Directed Call Park и нажимаем Add New. В новом окне в поле Number указываем номер или диапазон номеров для парковки. Затем в строке Retrieval Prefix указываем код, который необходимо набрать, для того чтобы перехватить удерживаемый звонок. Также в поле Reversion Number можно указать номер, на который будет переадресовываться вызов, если никто его не перехватит до того как истечет таймер Call Park Reversion (по умолчанию 60 секунд). Для сохранения настроек нажимаем Save. Теперь Call Park настроен и кнопку парковки можно вывести на экран, добавив ее в Button Template или Softkey Template.
img
Современная IT-сфера немыслима без компьютерных сетей. С течением времени сети росли и расширялись, и соответственно, возникла необходимость их обслуживания. Это было реализовано на аппаратном уровне возникли выделенные ЭВМ, которые предназначались исключительно для обслуживания компьютерной сети. Эти компьютеры стали называть серверами (от английского to serve служить). Такое решение позволило перевести обслуживание сетей в автоматизированную плоскость. Такие машины требовали создания специализированного программного обеспечения. Такие разработки вели различные компании, и результатом их деятельности стало появление целых операционных систем, предназначенных только для работы на серверах. Отличие таких операционных систем от сборок, предназначенных для офисов или домашнего использования в том, что они предназначены для выполнения различных по сути задач, и поэтому обладают различным функционалом. В этой статье мы рассмотрим, как изменялись операционные системы, предназначенные для серверов, от компании Windows. В 1993 году компания выпустила в свет новую операционную систему, точнее, даже решение для существующей операционной системы Windows NT 3.1. Оно называлось Advanced Server, и отличалось от стандартной ОС тем, что также могло поддерживать домены, массивы RAID и аппаратной поддержкой 4 процессоров. Уже через год, в 1994 году Microsoft предоставила пользователям новую версию ОС Windows NT 3.5. Серверная версия данной ОС отличалась от предыдущей новыми внедренными решениями, например, поддержкой клиентских машин в сети даже под другими операционными системами. 1995 год подарил миру операционную систему Windows 95. За 3 месяца до ее появления вышла серверная ОС Windows NT 3.51 Server. В данной системе была предусмотрена возможность клиент-серверного обмена с Win 95, а в целом система была "заточена" под архитектуру PowerPC. Следующей версией серверных ОС от Microsoft стала Windows NT 4.0 Server.Она имела более высокие системные требования, а также позволяла на основе себя создавать компьютерные сети для небольших бизнес-компаний. Эта версия вышла в 1996 году, а в 1997 году вышла сборка Enterprise Edition, предназначенная для более крупных клиентов и сетей с большой нагрузкой. В 1998 году вышел дистрибутив Terminal server, главной особенностью которого стала поддержка удаленного доступа. Это решение прижилось и в более поздних версиях OS Windows. Выпуск операционной системы Windows 2000 также повлек за собой выход аж трех версий серверной операционной системы. Это были: Windows 2000 Server - основными нововведениями которого стали внедрение новой методики аутентификации, функция Active Directory и возможность использования динамического IP. (2 процессора, 4 ГБ оперативной памяти) Windows 2000 Advanced Server версия для среднего и крупного бизнеса. Она была предназначена для машин с большей аппаратной мощностью, нежели стандартная сборка, и реализовывала свои возможности через кластерную инфраструктуру. (8 процессоров, 8 ГБ оперативной памяти) Windows 2000 Datacenter Server этакое "вундерваффе" среди новоявленных серверных ОС была предназначена для крупных компаний, имеющих самые мощные сервера и большие объемы передаваемых внутри сети данных. (32 процессора, 32 ГБ оперативной памяти) Полноценная новая версия сетевой ОС от Microsoft появилась в 2003 году. Она называлась Windows 2003 Server, и была создана на основе Windows XP специально для работы с серверами. В ней была добавлена поддержка Microsoft .NET, улучшена система Active Directory, добавлены новые решения безопасности и внедрена обновленная поддержка интернет-служб, что позволило в разы повысить скорость и эффективность работы системы. Второй релиз данной версии состоялся в 2005 году, при этом компания внедрила в операционную систему ряд решений, позволяющих оптимизировать ее работу. Следующая версия серверной ОС появилась в 2008 году и носила название Windows Server 2008. Она отличалась от предыдущих версий возможностью установки так называемого "ядра сервера", улучшениями Active Directory, встроенным Windows Power Shell, возможностью изолировать и восстанавливать поврежденные данные без перезагрузки сервера и значительным обновлением службы терминалов. Также систему "почистили" от ненужных функций, что также благоприятно повлияло на ее использование. Второй релиз этой системы был основан на Windows 7, с внедрением соответствующих улучшений. Появление на рынке OS Windows 8 повлекло за собой выход серверной версии, которая называлась Windows Server 2012. Она была выпущена в 4 редакциях Foundation (для исследовательских задач), Essentials (версия с ограничением по количеству пользователей и с неполным функционалом), Standard и Datacenter (обе версии с широчайшим, незначительно различающимся функционалом). Эта версия собрала в себе все лучшее, что было в прошлых вариантах ОС и внедрила несколько новых решений, значительно упрощающих и ускоряющих работу. В 2013 году был выпущен второй релиз, еще более оптимизированный и эффективный. В 2016 году появилась Windows Server 2016 серверная операционная система, поддерживающая обновление с предыдущих версий. Здесь были внедрены новые возможности в управлении процессами, решения безопасности и общей эффективности системы. Также изменения коснулись и стандартного ПО, по умолчанию поставляемого вместе с ОС. И наконец, последней на текущий момент версией ОС Windows Server является Windows Server 2019. Удобный графический интерфейс Windows 10 и внедрение новых решений, существенно расширяющих возможности относительно предыдущих версий, делают Windows Server 2019 одной из наиболее популярных серверных операционных систем в мире.
img
В основном, в современных корпоративных сетях можно выделить следующие типы задержки: Задержка обработки: Это время, которое затрачивает маршрутизатор на получение пакета на входном интерфейсе и отправку его в исходящую очередь на исходящий инетерфейс. Задержка обработки зависит от следующих факторов: Скорость центрального процессора; Использование центрального процессора; Архитектура маршрутизатора; Настроенные опции входящих и исходящих интерфейсов. Задержка очереди: Это время, которое пакет находится в очереди на отправку. Данный вид задержки зависит от таких факторов как количество и размер пакетов, которые уже находятся в очереди, полоса пропускания интерфейса и механизм очередей; Задержка сериализации: Время, необходимое для перемещения фрейма в физическую среду передачи; Задержка распространения: Время, которое занимает путь пакета от источника к получателю по каналу связи. Эта задержка сильно зависит от среды передачи. Методы ограничения задержки Маршрутизатор имеет достаточно мощностей для того, чтобы быстро и оперативно принимать решения о дальнейшем перенаправлении пакетов. Задержка обработки, очереди и сериализации зависит от следующих факторов: Средняя длина очереди; Средняя длина пакетов в очереди; Пропускная способность канала связи. Указанные ниже методы удовлетворяют требования чувствительного к задержке трафика Увеличение пропускной способности: При достаточной пропускной способности, сокращается время ожидания в исходящей очереди, тем самым, сокращается задержка сериализации; Приоритизация чувствительного к задержкам трафика: Данный метод является более гибким. Указанные ранее алгоритмы PG, CQ, MDRR и LLQ имеют значительное воздействие задержку, вносимую очередью; Сжатие поля полезной нагрузки: Сжатие поля полезной нагрузки уменьшает общий размер пакета, тем самым, по сути, увеличив пропускную способность канала передачи. Так как сжатые пакеты меньше обычных по размеру, их передача занимает меньше времени. Важно помнить, что алгоритмы сжатия весьма сложны, и компрессия наряду с декомпрессией могут добавить дополнительные задержки; Сжатие заголовков пакетов: Сжатие заголовков не так сильно требует ресурсов центрального процессора, как сжатие поля полезной нагрузки, поэтому, данный механизм часто используется наряду с другими алгоритмами уменьшения задержки. Сжатие заголовков особенно актуально для голосового трафика. Потеря пакетов Обычно, потеря пакетов происходит при условии переполнения буфера маршрутизатора. Например, пакеты находятся в исходящей на интерфейсе очереди. В какой-то момент размер очереди достигает своего максимума, и, новые приходящие пакеты просто отбрасываются. В целом, потеря пакетов происходит по следующим причинам: Потеря на входящей очереди: если не хватает мощности CPU (Central Processing Unit) маршрутизатора, пакеты могут быть потеряны еще на входящем интерфейсе; Игнорирование пакетов: Буфер маршрутизатора переполнен, следовательно, приходящие пакеты просто игнорируются; Ошибка во фреймах: Аппаратное обнаружение ошибок во фреймах, например, Cyclic Redundancy Check (CRC). Как правило, потеря пакетов является результатом чрезмерной загрузки интерфейса. Используются следующие методы и алгоритмы для предотвращения потерь пакетов: Увеличение пропускной способности чтобы предотвратить перегрузку на интерфейсе; Обеспечение достаточной пропускной способности и увеличение буферного пространства для гарантированного перемещения чувствительного к задержкам трафика в начало очереди; Ограничить перегрузку путем отбрасывания пакетов с низким приоритетом до того, как произойдет переполнение интерфейса. Для обеспечения данной цели, инженер может использовать алгоритм Weighted Random Early Detection (WRED), который будет случайно отбрасывать нечувствительный к потерям и трафик и пакеты, с заранее настроенными низкими приоритетами.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59