По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В этом руководстве мы рассказываем, как выполнить резервное копирование и восстановление баз данных MySQL или MariaDB из командной строки с помощью утилиты mysqldump. Файлы резервных копий, созданные утилитой mysqldump, представляют собой набор операторов SQL, которые можно использовать для воссоздания исходной базы данных. Команда mysqldump также может генерировать файлы в формате CSV и XML. Вы также можете использовать утилиту mysqldump для переноса вашей базы данных MySQL на другой сервер MySQL. Синтаксис команды Mysqldump Прежде чем приступить к использованию команды mysqldump, начнем с обзора основного синтаксиса. Выражения утилиты mysqldump имеют следующую форму: mysqldump [options] > file.sql options - параметры mysqldump file.sql - дамп (резервная копия) файла Для использования команды mysqldump сервер MySQL должен быть доступен и запущен. Резервное копирование одной базы данных MySQL Наиболее распространенный вариант использования инструмента mysqldump - резервное копирование одной базы данных. Например, чтобы создать резервную копию базы данных с именем database_name, используя пользователя root, и сохранить ее в файл с именем database_name.sql, вы должны выполнить следующую команду: mysqldump -u root -p database_name > database_name.sql Вам будет предложено ввести пароль root. После успешной аутентификации начнется процесс дампа. В зависимости от размера базы данных процесс может занять некоторое время. Если вы вошли в систему как тот же пользователь, которого вы используете для выполнения экспорта, и этот пользователь не требует пароля, вы можете пропустить опции -u и -p: mysqldump database_name > database_name.sql Резервное копирование нескольких баз данных MySQL ля резервного копирования нескольких баз данных MySQL одной командой вам нужно использовать параметр --database, за которым следует список баз данных, которые вы хотите сделать резервную копию. Каждое имя базы данных должно быть разделено пробелом. mysqldump -u root -p --databases database_name_a database_name_b > databases_a_b.sql Команда выше создаст файл дампа, содержащий обе базы данных. Резервное копирование всех баз данных MySQL Используйте опцию --all-database для резервного копирования всех баз данных MySQL: mysqldump -u root -p --all-databases > all_databases.sql Как и в предыдущем примере, команда выше создаст один файл дампа, содержащий все базы данных. Резервное копирование всех баз данных MySQL в отдельные файлы Утилита mysqldump не предоставляет возможность резервного копирования всех баз данных в отдельные файлы, но мы легко достигаем этого с помощью простого цикла bash FOR: for DB in $(mysql -e 'show databases' -s --skip-column-names); do mysqldump $DB > "$DB.sql"; done Команда выше создаст отдельный файл дампа для каждой базы данных, используя имя базы данных в качестве имени файла. Создание сжатой резервной копии базы данных MySQL Если размер базы данных очень большой, рекомендуется сжать вывод. Для этого просто перенаправьте вывод в утилиту gzip и перенаправьте его в файл, как показано ниже: mysqldump database_name | gzip > database_name.sql.gz Создать резервную копию с отметкой времени Если вы хотите сохранить более одной резервной копии в одном месте, вы можете добавить текущую дату в имя файла резервной копии: mysqldump database_name > database_name-$(date +%Y%m%d).sql Команда выше создаст файл в следующем формате database_name-20200223.sql Восстановление дампа MySQL Вы можете восстановить дамп MySQL с помощью инструмента mysql. Общий синтаксис команды выглядит следующим образом: mysqld database_name < file.sql В большинстве случаев вам необходимо создать базу данных куда вы будете производить импорт. Если база данных уже существует, сначала вам нужно удалить ее. В следующем примере первая команда создаст базу данных с именем database_name, а затем импортирует в нее дамп database_name.sql: mysql -u root -p -e "create database database_name"; mysql -u root -p database_name < database_name.sql Восстановление одной базы данных MySQL из полного дампа MySQL Если вы создали резервную копию всех своих баз данных с помощью параметра -all-database и хотите восстановить одну базу данных из файла резервной копии, который содержит несколько баз данных, используйте параметр --one-database, как показано ниже: mysql --one-database database_name < all_databases.sql Экспорт и импорт базы данных MySQL одной командой Вместо того, чтобы создавать файл дампа из одной базы данных и затем импортировать резервную копию в другую базу данных MySQL, вы можете использовать следующую однострочную команду: mysqldump -u root -p database_name | mysql -h remote_host -u root -p remote_database_name Команда выше передаст вывод клиенту mysql на удаленном хосте и импортирует его в базу данных с именем remote_database_name. Перед выполнением команды убедитесь, что база данных уже существует на удаленном сервере. Автоматизация резервного копирования с помощью Cron Автоматизация процесса резервного копирования баз данных так же проста, как создание задания cron, которое будет запускать команду mysqldump в указанное время. Подробно про cron можно прочитать в нашей статье. Чтобы настроить автоматическое резервное копирование базы данных MySQL с помощью cronjob, выполните следующие действия: Создайте файл с именем .my.cnf в вашем домашнем каталоге пользователя: sudo nano ~/.my.cnf Скопируйте и вставьте следующий текст в файл .my.cnf. [client] user = dbuser password = dbpasswd Не забудьте заменить dbuser и dbpasswd на пользователя базы данных и пароль пользователя. Ограничьте права доступа к файлу учетных данных, чтобы только ваш пользователь имел к нему доступ, используя команду cmod (подробнее про которую можно прочесть тут): chmod 600 ~/.my.cnf Создайте каталог для хранения резервных копий при помощи комадны mkdir (про нее тоже есть статья): mkdir ~/db_backups Откройте ваш пользовательский файл crontab: crontab -e Добавьте следующее задание cron, которое будет создавать резервную копию имени базы данных mydb каждый день в 3 часа ночи: 0 3 * * * /usr/bin/mysqldump -u dbuser mydb > /home/username/db_backups/mydb-$(date +%Y%m%d).sql Не забудьте заменить username вашим реальным именем пользователя. Вы также можете создать еще один cron job, чтобы удалить любые резервные копии старше 30 дней: find /path/to/backups -type f -name "*.sql" -mtime +30 -delete Конечно, вам нужно настроить команду в соответствии с вашим местоположением резервной копии и именами файлов. Чтобы узнать больше о команде find, ознакомьтесь с нашим Руководством по поиску файлов в Linux с помощью командной строки. Заключение Это руководство охватывает только основы, но оно должно быть хорошим началом для тех, кто хочет научиться создавать и восстанавливать базы данных MySQL из командной строки с помощью утилиты mysqldump. Если вы хотите найти больше материалов про базы данных, то просто наберите sql в нашем поиске!
img
В данной статье мы рассмотрим работу с пакетами и менеджерами пакетов в Red Hat (CentOS) операционных системах. Для работы с пакетами в операционных системах используют yum и rpm. В современной версии используется пакетный менеджер dnf, но он является "форком" от пакетного менеджера yum. Данный пакет разрабатывался в целях решить проблему производительности в первую очередь и в принципе он очень похож, поэтому мы посмотрим в статье на примере классических пакетных менеджеров. В статье мы рассмотрим следующие вопросы: Установка, удаление и обновление пакетов. Поиск пакетов и их зависимостей. Получение полной информации о пакетах. В статье нам понадобится понимание: rpm утилита управления пакетами в Red Hat системах. rpm2cpio разбор пакета на двоичные файлы. yum программа для работы с пакетами в Red Hat системах yumdownloader скачивание пакетов /etc/yum.repos.d./ - перечень репозиториев. Если сравнивать с Ubuntu можно сказать, что вместо dpkg у нас будет rpm, а вместо apt будет yum и дополнительные особенности centos. Открываем консоль. Переходим в режим суперпользователя, команда su. Посмотрим на команду rpm --help. Функционал достаточно большой, все ключи на один экран не помещаются. Есть опции по запросу и проверке пакетов можно найти ключи в секции queryverify. Очень мощная утилита, но для работы все таки удобнее использовать пакетный менеджер yum. Попробуем воспользоваться rpm, чтобы посмотреть его особенности. Лучше всего смотреть на примере. Скачаем программу webmin в виде установочного rpm пакета. Скачали пакет и положили в директорию tmp. Переходим в нее cd /tmp. Далее можно посмотреть наличие файлов ls la. Установим данный пакет. Для установки используем два ключа, ключ i означает install, ключ v означает verbose показывать ход установки. rpm iv webmin-1.955-1.src.rpm Пакет установился. Можно теперь зайти в браузер и начать работу, но цель была посмотреть, как работает rpm. Для того, чтобы удалить пакет необходимо использовать ключ e, который означает erase. Команда будет выглядеть следующим образом: rpm e webmin Название пакета можно полностью не писать, должно работать. Для того, чтобы проверить ключ у скаченного пакета есть ключ K. rpm K webmin-1.955-1.noarch.rpm Как из вывода видим, с пакетом не все в порядке отсутствует ключ для расшифровки подписи. Но данному пакету можно доверять, т. к. он скачан из надежного источника и качали сами. Для того, чтобы проверить состоянии самого пакета есть другой ключ V rpm Vv webmin-1.955-1.noarch.rpm Можно получить информацию о пакете для этого необходимо использовать ключи qi, где query information. rpm qi webmin-1.955-1.noarch.rpm В данном выводе мы можем много информации получить о пакете, Название, Версия, дата сборки и т.д. Возможно, когда-то может возникнуть необходимость посмотреть из чего состоит пакет rpm и разобрать его на составные части. Для этого необходимо использовать небольшую утилиту rpm2cpio. Расшифровывается т.е. rpm переделывается в cpio "copy inputoutput" это и двоичный архиватор, и формат файла. Сейчас пакет rpm должен пере паковаться в формат cpio. Пользоваться следующим образом: rpm2cpio webmin-1.955-1.noarch.rpm > webmin.cpio Как мы видим, получили еще один файл с расширением cpio и вот этот файл в формате родном для других unix систем. И так RPM это такая низкоуровневая утилита, которая позволяет работать с RPM пакетами. YUM Родной и понятный yum, так же имеет файл помощи, как и все другие утилиты. yum help У него меньше опций, меньше возможностей. И есть большое количество команд, проверить, очистить, удалить, получить информацию. Здесь не просто уже ключи, а целые слова и маленькие опции для комфортной работы. Например, мы можем написать: yum install openssh-clients Можно видеть, как он ищет проверяет и говорит, что данный пакет установлен, последняя версия пакета и ему нечего делать. Для удаления мы даем команду: yum remove openssh-clients Он запросит подтверждение на данное действие и если мы подтвердим, то утилита будет удалена. Можно удалить весь ssh: yum remove openssh, но тогда будет предупреждение, что обнаружена одна зависимость от openssh-clients и, если мы подтвердим обе утилиты будут полностью удалены. Т.е это умный пакетный менеджер позволяет работать так, чтобы лишние утилиты не болтались, т.е он сам находит и разрешает зависимости. Еще интересный факт, что при установки пакетный менеджер проверяет зеркала и кэш, что ему позволяет определять, что установлена последняя версия программного обеспечения. В отличии от пакетного менеджера apt (Ubuntu), которому надо сначала обновить кэш apt update, yum автоматически сам обновляет информацию в процессе установки пакетов. Репозиторий yum находится в следующей директории и лежат как отдельные файлы. /etc/yum.repos.d/ Посмотрим базовый репозиторий cat CentOS-Base.repo Написано, что это зеркало для подключения клиентов и проверки статуса обновлений. Тут мы можем увидеть имя репозитория и зеркала где находятся обновления. Есть еще ключи, которые можно проверять, а можно и не проверять. Если мы изменим строчку gpgcheck = 0 то проверка осуществляться не будет. Можно самостоятельно добавить репозиторий, создав файл с расширением repo. И тогда получится свой репозиторий. Для обновления всех пакетов используется команда yum upgrade. Если пакетный менеджер видит обновления, то он предложит сделать выбор установить или нет. Дополнительно есть утилита для просто закачки пакетов без установки yumdownloader. Работает просто. Переходим в нужную директорию и вводим, например, yumdownloader openssh и происходит закачка. И последнее пакетный менеджер умеет искать пакеты. Например, yum search openssh.
img
Перед тем как начать, почитайте материал про топологию сетей. Обнаружение соседей позволяет плоскости управления узнать о топологии сети, но как узнать информацию о достижимых пунктах назначения? На рисунке 8 показано, как маршрутизатор D узнает о хостах A, B и C? Существует два широких класса решений этой проблемы - реактивные и упреждающие, которые обсуждаются в следующих статьях. Реактивное изучение На рисунке 8 предположим, что хост A только что был включен, а сеть использует только динамическое обучение на основе передаваемого трафика данных. Как маршрутизатор D может узнать об этом недавно подключенном хосте? Одна из возможностей для A - просто начать отправлять пакеты. Например, если A вручную настроен на отправку всех пакетов по назначению, он не знает, как достичь к D, A должен отправить в хотя бы один пакет, чтобы D обнаружил его существование. Узнав A, D может кэшировать любую релевантную информацию на некоторое время - обычно до тех пор, пока A, кажется, отправляет трафик. Если A не отправляет трафик в течение некоторого времени, D может рассчитать запись для A в своем локальном кэше. Этот процесс обнаружения достижимости, основанный на фактическом потоке трафика, является реактивным открытием. С точки зрения сложности, реактивное обнаружение торгует оптимальным потоком трафика против информации, известной и потенциально переносимой в плоскости управления. Потребуется некоторое время, чтобы сработали механизмы реактивного обнаружения, то есть чтобы D узнал о существовании A, как только хост начнет посылать пакеты. Например, если хост F начинает посылать трафик в сторону а в тот момент, когда A включен, трафик может быть перенаправлен через сеть на D, но D не будет иметь информации, необходимой для пересылки трафика на канал, а следовательно, и на A. В течение времени между включением хоста A и обнаружением его существования пакеты будут отброшены-ситуация, которая будет казаться F в худшем случае сбоем сети и некоторым дополнительным джиттером (или, возможно, непредсказуемой реакцией по всей сети) в лучшем случае. Кэшированные записи со временем должны быть отключены. Обычно для этого требуется сбалансировать ряд факторов, включая размер кэша, объем кэшируемой информации об устройстве и частоту использования записи кэша в течение некоторого прошедшего периода времени. Время ожидания этой кэшированной информации и любой риск безопасности какого-либо другого устройства, использующего устаревшую информацию, являются основой для атаки. Например, если A перемещает свое соединение с D на E, информация, которую D узнал об A, останется в кэше D в течение некоторого времени. В течение этого времени, если другое устройство подключается к сети к D, оно может выдавать себя за A. Чем дольше действительна кэшированная информация, тем больше вероятность для выполнения этого типа атаки. Упреждающее изучение Некоторая информация о доступности может быть изучена заранее, что означает, что маршрутизатору не нужно ждать, пока подключенный хост начнет отправлять трафик, чтобы узнать об этом. Эта возможность имеет тенденцию быть важной в средах, где хосты могут быть очень мобильными; например, в структуре центра обработки данных, где виртуальные машины могут перемещаться между физическими устройствами, сохраняя свой адрес или другую идентифицирующую информацию, или в сетях, которые поддерживают беспроводные устройства, такие как мобильные телефоны. Здесь описаны четыре широко используемых способа упреждающего изучения информации о доступности: Протокол обнаружения соседей может выполняться между граничными сетевыми узлами (или устройствами) и подключенными хостами. Информация, полученная из такого протокола обнаружения соседей, может затем использоваться для введения информации о доступности в плоскость управления. Хотя протоколы обнаружения соседей широко используются, информация, полученная через эти протоколы, не используется широко для внедрения информации о доступности в плоскость управления. Информацию о доступности можно получить через конфигурацию устройства. Почти все сетевые устройства (например, маршрутизаторы) будут иметь доступные адреса, настроенные или обнаруженные на всех интерфейсах, обращенных к хосту. Затем сетевые устройства могут объявлять эти подключенные интерфейсы как достижимые места назначения. В этой ситуации доступным местом назначения является канал (или провод), сеть или подсеть, а не отдельные узлы. Это наиболее распространенный способ получения маршрутизаторами информации о доступности сетевого уровня. Хосты могут зарегистрироваться в службе идентификации. В некоторых системах служба (централизованная или распределенная) отслеживает, где подключены хосты, включая такую информацию, как маршрутизатор первого прыжка, через который должен быть отправлен трафик, чтобы достичь их, сопоставление имени с адресом, услуги, которые каждый хост способен предоставить, услуги, которые каждый хост ищет и/или использует, и другую информацию. Службы идентификации распространены, хотя они не всегда хорошо видны сетевым инженерам. Такие системы очень распространены в высокомобильных средах, таких как беспроводные сети, ориентированные на потребителя. Плоскость управления может извлекать информацию из системы управления адресами, если она развернута по всей сети. Однако это очень необычное решение. Большая часть взаимодействия между плоскостью управления и системами управления адресами будет осуществляться через локальную конфигурацию устройства; система управления адресами назначает адрес интерфейсу, а плоскость управления выбирает эту конфигурацию интерфейса для объявления в качестве достижимого назначения. Объявление достижимости и топология После изучения информации о топологии и доступности плоскость управления должна распространить эту информацию по сети. Хотя метод, используемый для объявления этой информации, в некоторой степени зависит от механизма, используемого для расчета путей без петель (поскольку какая информация требуется, где рассчитывать пути без петель, будет варьироваться в зависимости от того, как эти пути вычисляются), существуют некоторые общие проблемы и решения, которые будут применяться ко всем возможным системам. Основные проблемы заключаются в том, чтобы решить, когда объявлять о доступности и надежной передаче информации по сети. Решение, когда объявлять достижимость и топологию Когда плоскость управления должна объявлять информацию о топологии и доступности? Очевидным ответом может быть "когда это будет изучено", но очевидный ответ часто оказывается неправильным. Определение того, когда объявлять информацию, на самом деле включает в себя тщательный баланс между оптимальной производительностью сети и управлением объемом состояния плоскости управления. Рисунок 9 будет использован для иллюстрации. Предположим, хосты A и F отправляют данные друг другу почти постоянно, но B, G и H вообще не отправляют трафик в течение некоторого длительного периода. В этой ситуации возникают два очевидных вопроса: Хотя для маршрутизатора C может иметь смысл поддерживать информацию о доступности для B, почему D и E должны поддерживать эту информацию? Почему маршрутизатор E должен поддерживать информацию о доступности хоста A? С точки зрения сложности существует прямой компромисс между объемом информации, передаваемой и удерживаемой в плоскости управления, и способностью сети быстро принимать и пересылать трафик. Рассматривая первый вопрос, например, компромисс выглядит как способность C отправлять трафик из B в G при его получении по сравнению с C, поддерживающим меньше информации в своих таблицах пересылки, но требующимся для получения информации, необходимой для пересылки трафика через некоторый механизм при получении пакетов, которые должны быть переадресованы. Существует три общих решения этой проблемы. Проактивная плоскость управления: плоскость управления может проактивно обнаруживать топологию, вычислять набор путей без петель через сеть и объявлять информацию о достижимости. Упреждающее обнаружение топологии с реактивной достижимостью: плоскость управления может проактивно обнаруживать топологию и рассчитывать набор путей без петель. Однако плоскость управления может ждать, пока информация о доступности не потребуется для пересылки пакетов, прежде чем обнаруживать и / или объявлять о доступности. Реактивная плоскость управления: плоскость управления может реактивно обнаруживать топологию, вычислять набор путей без петель через сеть (обычно для каждого пункта назначения) и объявлять информацию о доступности. Если C изучает, сохраняет и распределяет информацию о доступности проактивно или в этой сети работает проактивная плоскость управления, то новые потоки трафика могут перенаправляться через сеть без каких-либо задержек. Если показанные устройства работают с реактивной плоскостью управления, C будет: Подождите, пока первый пакет в потоке не направится к G (к примеру) Откройте путь к G с помощью некоторого механизма Установите путь локально Начать пересылку трафика в сторону G Тот же процесс должен быть выполнен в D для трафика, перенаправляемого к A от G и F (помните, что потоки почти всегда двунаправленные). Пока плоскость управления изучает путь к месту назначения, трафик (почти всегда) отбрасывается, потому что сетевые устройства не имеют никакой информации о пересылке для этого достижимого места назначения (с точки зрения сетевого устройства достижимый пункт назначения не существует). Время, необходимое для обнаружения и создания правильной информации о пересылке, может составлять от нескольких сотен миллисекунд до нескольких секунд. В это время хост и приложения не будут знать, будет ли соединение в конечном итоге установлено, или если место назначения просто недоступно. Плоскости управления можно в целом разделить на: Проактивные системы объявляют информацию о доступности по всей сети до того, как она понадобится. Другими словами, проактивные плоскости управления хранят информацию о доступности для каждого пункта назначения, установленного на каждом сетевом устройстве, независимо от того, используется эта информация или нет. Проактивные системы увеличивают количество состояний, которые передаются и хранятся на уровне управления, чтобы сделать сеть более прозрачной для хостов или, скорее, более оптимальной для краткосрочных и чувствительных ко времени потоков. Реактивные системы ждут, пока информация о пересылке не потребуется для ее получения, или, скорее, они реагируют на события в плоскости данных для создания информации плоскости управления. Реактивные системы уменьшают количество состояний, передаваемых на уровне управления, делая сеть менее отзывчивой к приложениям и менее оптимальной для кратковременных или чувствительных ко времени потоков. Как и все компромиссы в сетевой инженерии, описанные здесь два варианта, не являются исключительными. Можно реализовать плоскость управления, содержащую некоторые проактивные и некоторые реактивные элементы. Например, можно построить плоскость управления, которая имеет минимальные объемы информации о доступности, описывающей довольно неоптимальные пути через сеть, но которая может обнаруживать более оптимальные пути, если обнаруживается более длительный или чувствительный к качеству обслуживания поток. Что почитать дальше? Советуем материал про реактивное и упреждающее распределение достижимости в сетях.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59