По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Задержка в сети, или сетевая задержка, - это временная задержка при передаче запросов или данных от источника к адресату в сетевой экосистеме. Давайте посмотрим, как вы можете выявить и устранить задержку в сети.  Любое действие, которое требует использование сети, например, открытие веб-страницы, переход по ссылке, открытие приложения или игра в онлайн-игру, называется активностью. Активность пользователя – это запрос, а время отклика веб-приложения – это время, которое требуется для ответа на этот запрос.  Временная задержка также включает в себя время, которое сервер тратит на выполнение запроса. Таким образом, временная задержка определяется как круговой путь – время для записи, обработки и получения пользователем запроса, где он уже декодируется.  Понятие «низкое значение задержки» относится к относительно недлительным временным задержкам при передаче данных. А вот длительные задержки, или чрезмерные задержки, не слишком приветствуются, так как они ухудшают процесс взаимодействия с пользователем.  Как исправить задержку в сети? На просторах Интернета есть большое количество инструментов и программных средств, которые могут помочь в анализе и устранении неполадок в сети. Некоторые из них платные, некоторые бесплатные. Впрочем, есть инструмент под названием Wireshark – бесплатное приложение с общедоступной лицензией, которое используется для перехвата пакетов данных в режиме реального времени. Wireshark – это самый популярный и самый часто используемый в мире анализатор сетевых протоколов. Это приложение поможет вам перехватывать сетевые пакеты и отображать их детальную информацию. Вы можете использовать эти пакеты для проведения анализа в режиме реального времени или в автономном режиме после того, как сетевые пакеты уже будут перехвачены. Это приложение поможет вам исследовать сетевой трафик под микроскопом, фильтруя и углубляясь в него в попытках найти корень проблемы. Оно помогает с сетевым анализом, и, как следствие, с сетевой безопасностью.  Что может вызывать задержку в сети? Есть несколько основных причин медленного сетевого подключения. Вот некоторые из них: Большая задержка Зависимости приложений Потеря пакетов Перехватывающие устройства Нерациональные размеры окон В данной статье мы рассмотрим каждую из вышеприведенных причин задержки в сети, а также посмотрим, как можно решить эти проблемы с помощью Wireshark. Проверка с помощью Wireshark Большая задержка Понятие «большая задержка» подразумевает время, которое требуется для передачи данных от одной конечной точки к другой. Влияние большой задержки на передачу данных по сети очень велико. На приведенной ниже диаграмме в качестве примера показано время кругового пути при загрузке файла по пути с высокой задержкой. Время задержки кругового пути часто превышает одну секунду, что является недопустимым.  Перейдите к разделу Wireshark Statistics. Выберите опцию TCP stream graph. Выберите Round Trip time graph, чтобы посмотреть, сколько времени необходимо для загрузки файла.  Wireshark используют для расчета времени кругового пути для того, чтобы определить, это ли является причиной плохой работы коммуникационной сети протокола управления передачей (TCP - Transmission Control Protocol). TCP используется для разных целей, например, для просмотра веб-страниц, передачи данных, протокола передачи файлов и многого другого. В большинстве случаев операционную систему можно настроить так, чтобы на каналах с большой задержкой она работала более эффективно, особенно когда хосты используют Windows XP. Зависимости приложений Некоторые приложения имеют зависимости, то есть они зависят от каких-то других приложений, процессов или от обмена данными с хостом. Допустим, что ваше приложение – это база данных, и оно зависит от подключения к другим серверам, которое необходимо для получения элементов базы данных. В таком случае слабая производительность на этих «других серверах» может негативно повлиять на время загрузки локального приложения.  Рассмотрим, например, просмотр веб-страниц при условии, что целевой сервер ссылается на несколько других веб-сайтов. Например, чтобы загрузить главную страницу сайта  www.espn.com , вы должны сначала посетить 16 хостов, которые обеспечивают главную страницу рекламой и наполнением.  На приведенной выше картинке показано окно «HTTP/Load Distribution» в Wireshark. В нем отображается список всех серверов, которые использует главная страница сайта  www.espn.com .  Потеря пакетов Потеря пакетов – это одна из самых часто встречающихся проблем в сети. Потеря пакетов происходит, когда пакеты данных неправильно доставляются от отправителя к получателю через Интернете. Когда пользователь посещает некий веб-сайт и начинает загружать элементы сайта, потерянные пакеты вызывают повторную передачу, что увеличивает скорость загрузки веб-файлов и замедляет при этом общий процесс загрузки.  Более того, потеря пакетов оказывает крайне негативное влияние на приложение, когда оно использует протокол TCP. Когда TCP-соединение обнаруживает потерянный пакет, то скорость передачи данных автоматически снижается, чтобы компенсировать сетевые проблемы.  Потом скорость постепенно восстанавливается до более приемлемого уровня до следующего потерянного пакета, что снова приведет к существенному снижению скорости передачи данных. Загрузка объемных файлов, которая должна была легко проходить по сети, если бы не было потерянных пакетов, теперь заметно страдает от их наличия.  Что это значит – «пакет потерян»? Это неоднозначный вопрос. Если программа работает через протокол TCP, то потеря пакетов может быть обнаружена двумя способами. В первом варианте получатель отслеживает пакеты по их порядковым номерам и, таким образом, может обнаружить отсутствующий пакет. В таком случае клиент делает три запроса на этот отсутствующий пакет (двойное подтверждение), после чего он отправляется повторно. Во втором варианте потерянный пакет обнаруживает отправитель, когда понимает, что получатель не подтвердил получение пакета данных, и по истечении времени ожидания отправляет пакет данных повторно.  Wireshark указывает, что произошла перегрузка сети, а многократные подтверждения провоцируют повторную передачу проблематичного трафика, который выделен цветом. Большое количество продублированных подтверждений указывают на то, что пакет(ы) были потеряны, а также на существенную задержку в сети.  Для того, чтобы повысить производительность сети, важно определить точное место потери пакетов. Когда Wireshark обнаружил потерю пакетов, он начинает перемещаться по пути следования пакетов до тех пор, пока не найдет место их потери пакетов. На данный момент мы находимся «у истоков» точки потери пакетов, поэтому знаем, на чем нужно сосредоточиться при отладке.  Перехватывающие устройства Сетевые перехватчики – это связующие устройства, такие как коммутаторы, маршрутизаторы и брандмауэры, которые заняты выбором направления передачи данных. При потере пакетов эти устройства необходимо проверить, потому что они могли стать причиной утери.  Задержка может возникнуть при работе этих связующих устройств. Например, если установлен приоритет трафика, то дополнительная задержка может возникнуть в потоке с низким уровнем приоритета.  Неэффективные размеры окон Вдобавок к операционной системе Windows, в сетях TCP/IP есть и другие «окна». Скользящее окно Окно получателя Окно отслеживания перегрузок сети Все эти окна совместно отражают производительность сети на основе протокола TCP. Давайте посмотрим, что из себя представляет каждое из этих окон, и определим, как они влияют на пропускную способность сети.  Скользящее окно Скользящее окно используется для широковещательной передачи последующих TCP-сегментов по сети по мере подтверждения данных. Как только отправитель получает подтверждение о том, что получатель получил переданные фрагменты данных, скользящее окно расширяется. До тех пор, пока в сети не обнаружатся потерянные данные, передавать можно достаточно большие объемы данных. При потере пакета скользящее окно сжимается, так как сеть уже не может справиться с таким большим объемом данных.  Окно получателя Окно получателя TCP-стека – это пространство буфера. Когда данные получены, они сохраняются в этом буферном пространстве до тех пор, пока приложение их не перехватит. Окно получателя начинает заполняться, когда приложение не успевает принимать данные, что приводит к сценарию «нулевого окна». Когда получатель объявляет о состоянии «нулевого окна», вся передача данных на хост должна быть остановлена. Пропускная способность падает до нуля. Метод масштабирования окна (RFC 1323) позволяет хосту увеличить размер окна получателя и снизить вероятность наступления сценария «нулевого окна».  На приведенной выше картинке продемонстрирована 32-секундная задержка сетевого соединения из-за сценария «нулевого окна». Окно отслеживания перегрузок сети Окно отслеживания перегрузок сети определяет максимально возможный объем данных, с которым может справиться сеть. На это значение влияют следующие факторы: скорость передачи пакетов отправителя, количество потерянных пакетов в сети и размер окна получателя. В процессе корректной работы сети окно постоянно увеличивается до тех пор, пока передача данных не завершится или пока она не достигнет «потолка», установленного работоспособностью сети, возможностями передачи отправителя или размером окна получателя. Каждое новое соединение запускает процедуру согласования размера окна заново.  Рекомендации для хорошей работоспособности сети Изучите, как можно использовать Wireshark в качестве меры первой помощи, чтобы можно было быстро и эффективно находить источник низкой производительности Определите источник задержки в сети и по возможности сократите ее до приемлемого уровня Найдите и устраните источник потери пакетов Проанализируйте размер окна передачи данных и по возможности уменьшите его Проанализируйте производительность перехватывающих устройств для того, чтобы посмотреть, увеличивают ли они задержку или, возможно, отбрасывают пакеты Оптимизируйте приложение, чтобы оно могло передавать большие объемы данных и, если это возможно, извлекать данные из окна получателя  Заключение В данной статье мы рассмотрели самые основные причины проблем с производительностью сети. Но есть один немаловажный фактор, который просто нельзя упускать, - это непонимание того, как работает передача данных по сети. Wireshark предоставляет визуализацию сети так же, как рентген или компьютерная томография, которая предоставляет визуализацию человеческого тела для точной и быстрой диагностики. Wireshark стал критически важным инструментом, который способен помочь в обнаружении и диагностике проблем в сети.  А теперь проверьте и устраните проблемы с производительностью своей сети с помощью нескольких фильтров и инструментов Wireshark.
img
Привет! Мы продолжаем рассказывать про OpenScape Voice и в этой статье расскажем про Deployment Service или DLS. Сервер DLS предоставляет администратору возможность централизованного управления настройками телефонов и программных клиентов. При помощи DLS обеспечивается автоматизированное подключение телефонов к OpenScape Voice. Подключение к консоли управления DLS Для этого переходим во вкладку Configuration → Device Management, либо во вкладку Configuration → OpenScape Voice → General → Deployment Servers. Для добавления нового сервера нажимаем кнопку Add и во вкладке General указываем название и IP адрес сервера, а во вкладке Advanced Settings указываем данные для аутентификации (порт, протокол, логин и пароль). Уже добавленные сервера находятся в таблице ниже. Для перехода в консоль управления DLS нажимаем на иконку в столбце DLS Management Panel. Регистрация телефонов на сервере DLS Для того чтобы работать с телефонами их нужно зарегистрировать, а для этого им необходимо сообщить IP адрес сервера DLS. Регистрация происходит автоматически при первом обращении телефона к серверу. Существует несколько способов настройки IP-адреса DLS на телефоне: получение IP адреса по DHCP (используются опции 43 Vendor Specific Info или 60 Vendor Class), поиск и регистрация телефона с DLS и настройка IP адреса из меню администратора на телефоне. Поиск и регистрация телефона с сервера DLS Перейдем во вкладку Deployment Service - IP Devices → IP Device Interaction → Scan IP Devices и нажмем New для того чтобы добавить конфигурацию нового сканера. В строке IP Scanner укажем название для создаваемого сканера, а во вкладке IP Ranges укажем диапазон IP адресов и порт для сканирования (8085). Для одного сканера можно создать несколько зон поиска. Во вкладке Configuration ставим галочку в пункте Send DLS address и прописываем IP адрес и порт в полях ниже. Нажимаем Save, после чего настройка сохраняется в базе для дальнейшего использования. После произведенных действий нажимаем внизу на кнопку Scan IP Device для запуска сканера и ставим галочки в пунктах Scan IP Devices и Register IP Devices. Тут же выбираем, будет ли проводится повторная регистрация или же будут зарегистрированы только новые устройства. Затем нажимаем OK и ждем пока сканер закончит свою работу. Результаты поиска можно посмотреть во вкладке Scan Results. Настройка IP адреса DLS из меню телефона Также можно вручную указать IP адрес DLS сервера на самом телефоне. Заходим на его веб-интерфейс, и переходим во вкладку Administrator Pages → Network → Update Service (DLS) и указываем IP адрес и TCP порт, после чего нажимаем Save и наш телефон узнает о DLS.
img
Полиалфавитный шифр – это криптосистема, в которой используется несколько моноалфавитных шифров. Поэтому нам необходимо иметь как минимум 2 таблицы и шифрование текста происходит следующим образом. Первый символ шифруется с помощью первой таблицы, второй символ – с помощью второй таблицы и так далее. Сильные стороны полиалфавитных шифров заключается в том, что атака по маске и атака частотным криптоанализом здесь не работает, потому что в таких шифрах две разные буквы могут быть зашифрованы одним и тем же символом. Моноалфавитные шифры были популярны вплоть до конца 16 века, так как практически все научились их вскрывать. Необходимо было что-то менять и поэтому в 1585 году был создан шифр Виженера. С этого началась новая эпоха в истории криптографии, которая называется период полиалфавитных шифров, хотя попытки создать подобные криптосистемы были и раньше за пол века до этого, но ничего серьёзного из этого не получилось. Шифр Гронсфельда Данный шифр представляет собой модификацию шифра Цезаря и по своей структуре похож на шифр Виженера. Принцип работы. Берём к примеру текст «РАБОТА» и ключ, например - «136». Ключ в данном случае не одно число, а набор цифр, для понимания можно представить в виде «1,3,6» и не важно какой длины. Далее каждой букве исходного текста присваиваем по 1 цифре ключа, например «Р(1) А(3) Б(6) О(1) Т(3) А(6)» и каждому символу исходного текста прибавляем значение ключа по методу Цезаря. Получается зашифрованный текст «СГЖПХЁ». При расшифровании проделываем ту же логику, как при расшифровании по методу Цезаря. Шифр Виженера Шифр Виженера является самым популярным полиалфавитным шифров за всю историю. Для начала создаётся квадрат Виженера. Ключом в данном методе может быть любой длины и состоять из любых символов, которые есть в таблице 3. Например возьмём ключ «ШИНА» и исходный текст «РАБОТА». Проделываем то же самое, что и при шифре Гронсфельда, к каждой букве исходного текста записываем исходную букву ключа – «Р(Ш) А(И) Б(Н) О(А) Т(Ш) А(И)». Согласно таблице 3 по диагонали находим букву исходного текста, а по вертикали находим букву ключа, их пересечение является зашифрованной буквой, таким образом проделываем для всех букв и шифруем текст, получается «СЙППКЙ». Чтобы расшифровать нам нужно точно так же под каждой буквой закрытого текста записываем букву ключа - «С(Ш) Й(И) П(Н) П(А) К(Ш) Й(И)». По вертикали находим букву ключа и по этой строке находим зашифрованную букву, пересечение с буквой по горизонтальной строки – буква исходного текста, расшифровывает и получаем исходный текст. Атака методом индекса совпадений В данном случае рассмотрим криптоанализ шифра Виженера, его так же можно применять и к шифру Гронсфельда. Нижеприведённый метод криптоанализа называется методом индекса совпадений. Атака методом индекса совпадений состоит из 2 шагов: Определяет длину ключевого слова Дешифрование текста Рассмотрим каждый из этапов: 1. Для того, чтобы найти длину ключа воспользуемся методом индекса совпадений. ИС = 0,0553 Индекс совпадений – это константа, вероятность того, что две наугад выбранные буквы в нормальном осмысленном произвольном русском тексте будут одинаковые.То есть вероятность, что две наугад выбранные буквы будут одинаковые, равна 5,53%. При атаке на шифротекст необходимо ориентироваться именно на эту вероятность. Если имеет шифротекст, зная о нём только то, что он зашифрован шифром Виженера, определяем длину ключа. В шифре Виженера ключом выступает любая последовательность цифр, начиная с 2, потому что если была бы 1 буква, то это просто шифр Цезаря. Итак, начиная с минимума, предполагаем, что длина ключа составляет 2 символа и проверяем это. Выбираем из шифротекста каждую вторую букву, начиная с первой и выписываем отдельно полученную строку. Предполагаемую длину ключа обозначаем k=2, а количество символов в этой строке за L. Далее из алфавита берём каждую букву и считаем для неё индекс совпадений, то есть берём определённую букву и подсчитываем сколько раз она встретилась в этой строке шифротекста (это число обозначаем – n), и так для всех букв. Далее высчитываем индекс совпадений по формуле ИС = n(n-1)/L(L-1) Далее высчитываем индекс совпадений для всего текста путем сложения всех индексов совпадений для всех букв отдельно. Получаем определённое значение и сравниваем его со значением константы. Если индекс совпадений очень близко к константе или больше, то это означает, что подобрана верная длина ключа. Если значение индекса намного отличается от константы, то значит подобранная длина ключа неверная и необходимо взять длину ключа 3 и выбирать из шифротекста каждую третью букву, начиная с первой и выполнять те же действия. Если индекс снова намного отличается от константы берем следующие значения ключа и выполняет те же действия, до тех пор, пока индекс совпадений будет очень близок к константе. 2. Вычислив длину ключевого слова возвращаемся к шифротексту. Разбиваем текст на количество символов символов в ключе, например, при длине ключа k=3, делим текст на 3 части. В первую часть будет входить каждая третья буква, начиная с первой, во вторую часть – каждая третья буква, начиная со второй, и третья часть – каждая третья буква, начиная с третьей. После этого выписываем отдельно каждую часть. Отдельная часть представляет собой обычный шифр Цезаря. Далее дешифруем каждую часть методом частотного криптоанализа. Находим самую частую букву каждой части шифротекста, сравниваем её с буквой «О», так как она в русском алфавите самая частая и сравниваем шифрованную букву с буквой «О». Вычисляем разницу позиций между ними – в ответе получим число, равное ключу и дешифруем с помощью него по шифру Цезаря первую часть шифротекста. Такие же действия проделываем и для остальных частей, затем восстанавливаем части дешифрованного шифротекста и получаем исходный текст. Автокорреляционный метод Данный метод проще в реализации, чем метод индекса совпадений, но последовательность действий точно такая: Определение ключа Дешифрование текста Имея шифротекст, необходимо посчитать количество букв в нём. Желательно весь шифротекст записать в одну строку, затем сделать копию и разместить под ней же. Как и в случае с методом индекса совпадением предполагаем для начала минимальную длину ключа, то есть k=2. Затем в копии строки шифротекста убираем первые два символа и дописываем их в конец строки. Далее ищем количество совпадающих букв между этими двумя строками и находим долю количества совпадений от общего количества символов в тексте по формуле: Y = n/L Y - Доля количества совпадений n – количество совпадений L – количество символов в шифротексте Полученное значение сравниваем со значением контанты индекса совпадений, так же – если это значение намного отличается, предполагаем длину ключа k=3 и делаем ту же процедуру до тех пор, пока доля количества совпадений будет близка к константе индекса совпадений. После нахождения длины ключа проделываем то же самое, что и в методе индекса совпадений и дешифруем текст. Шифр Тритемиуса Шифр Тритемиуса позиционируется усиленным шифром Цезаря и описывается формулой: C = (m+s(p))modN C - номер зашифрованного символа в алфавите m - номер символа открытого текста в алфавите n - количество символов в алфавите s(p) - это ключ, который представляет собой математическую функцию, например: s(p) = 2p+const p - порядковый номер символа в исходном тексте const - любое число, которое задаётся в ручную Точно так же, как в шифре Цезаря каждый символ, перед тем, как шифровать, будет переводится в число, согласно определённой таблице. Первое, что нужно сделать – пронумеровать все символы в исходном тексте, то есть каждый символ получается свой номер в зависимости от своей позиции в тексте. Шифрование происходит посимвольно. Расшифрование происходит похожим способом и описывается формулой: C = (m-s(p))modN Шифр для своего времени очень неплох, потому что не смотря на свою простоту, то есть самая сложная часть – это выбрать функцию s(p). Он демонстрирует достаточно высокий криптоустойчивости, то есть не уступает ни шифру Виженера, ни шифру Гросфельда. Книжный шифр Книжный шифр – не является популярным шифром среди старых шифров, но при грамотном подходе к использованию, обеспечивает криптостойкость на порядки выше, чем шифр Виженера и Гронсфельда. Это симметричный шифр, в котором в качестве ключа используется любая книга на выбор, и процесс шифрования происходит посимвольно. Выбираем первый символ исходного текста и находим его в нашей книге (с любого места). И в качестве зашифрованного символа используем комбинацию из 3 цифр (номер страницы, номер строки, номер символа в строке) и проделываем тоже самое с остальными символами исходного текста. При этом для повышения безопасности при повторении символа в исходном тексте выбирать для него другую комбинацию в книге, чтобы зашифрованные комбинации не повторялись. Чтобы получатель смог расшифровать полученное сообщение должен обладать точно такой же книгой. Поочередно смотрит комбинацию и находит её в данной книге и расшифровывает полученное сообщение. Недостаток этого шифра – это непрактичность и трудоёмкость при шифровании и расшифровании.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59