По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В сегодняшней статье рассмотрим модуль, который стал доступен во FreePBX только с версии 13 и который позволяет создать первичную низкоуровневую защиту нашей IP-АТС - Firewall. Нужно отметить, что попытки создать нечто подобное на ранних версиях FreePBX всё-таки были, но все они не увенчались успехом и заставляли пользователей так или иначе идти на компромиссы для сохранения доступности функционала IP-АТС. Модуль Firewall был разработан с глубоким пониманием существующих проблем и его основной целью является защита “средней”, или другими словами, типовой инсталляции при обязательном сохранении VoIP сервисов. /p> Данный модуль отслеживает и блокирует атаки, пропуская при этом разрешенный трафик, а также непрерывно контролирует конфигурацию системы, автоматически открывая и закрывая порты для необходимых транков. Настройка модуля Firewall Перейдём к настройке. Для того, чтобы попасть в модуль, нужно перейти по следующему пути: Connectivity -> Firewall, откроется следующее окно: Чтобы включить модуль, нажмите кнопку Enable Firewall. Обратите внимание, после включения модуля никакие правила ещё не задействованы, их нужно настроить. Первое о чём сообщает модуль, это то, что IP-адрес, под которым мы зашли на IP-АТС не является членом “зоны доверия” (Trusted Zone) и предлагает добавить его для исключения возможных блокировок: Для наибольшего понимания, давайте разберёмся с понятием зоны (Zone), которым оперирует модуль Firewall. Все сетевые соединения, поступающие на VoIP-сервер считаются частью зоны. Каждый сетевой интерфейс и данные, поступающие на него принадлежат к определенной зоне. Стандартные зоны делятся на следующие: Reject - Все соединения, относящиеся к данной зоне, запрещены. Обратите внимание, что эта зона по-прежнему принимает RTP трафик, но никакие другие порты по умолчанию не прослушиваются. Трафик данной зоны может быть обработан с помощью Responsive Firewall, о котором будет сказано далее. External - Позволяет только https соединения для доступа к интерфейсу управления и UCP порту, если они определены. Трафик данной зоны может также быть обработан с помощью Responsive Firewall Other - Используется на доверенных внешних сетях, или других хорошо известных сетях. По умолчанию, позволяет получить доступ к UCP, а также обеспечивает нефильтрованный SIP и IAX. Internal - Используется на внутренних локальных сетях, по умолчанию позволяет получить доступ ко всем сервисам IP-АТС. Trusted - Все сетевые соединения данной зоны разрешены. Пропускается весь трафик от доверенной зоны. Именно сюда нам предложат добавить наш IP-адрес при первом включении модуля. Итак, чтобы добавить наш IP-адрес в список доверенных, нужно нажать You can add the host automatically here. Мы попадём во вкладку Preconfigured. Предлагается два варианта, это добавление адреса хоста и добавление подсети Add Host и Add Network соответственно: Проверить, что адрес (или сеть) добавлены в список доверенных можно во вкладке Zones в разделе Networks. В модуле Firewall есть также дополнительный элемент, который отслеживает сигнализационные запросы определённых сервисов и блокирует возможные атаки - Responsive Firewall. Такими запросами могут быть запросы протоколов сигнализации SIP или IAX, например, запросы авторизации или вызова. Когда Responsive включен, то любой сигнализационный пакет исходящий от хоста проходит через Firewall, если после некоторого количества таких пакетов, хост отправлявший их не прошёл успешную регистрацию, то весь трафик от этого хоста сбрасывается на короткий промежуток времени (60 сек). Если после данной блокировки хост продолжает слать пакеты с запросом регистрации и безуспешно пытается зарегистрироваться, то блокируется уже его IP-адрес на 24 часа. Кроме того, если на сервере настроен fail2ban, то система ещё и письмо отправит о данном событии. Чтобы включить данный функционал, на вкладке Responsive нужно нажать на кнопку Enable: Далее необходимо указать, для каких протоколов должен работать данный функционал: Известные IP-адреса или даже целые подсети, которые проявляли подозрительную активность и которые не должны иметь доступа к IP-АТС можно заблокировать во вкладке Zones -> Blacklists. И последний по счёту, но не по значимости, функционал модуля Firewall, о котором хотелось бы рассказать - Safe Mode. Данный функционал позволяет получить доступ к IP-АТС если случайно была применена неправильная конфигурация, которая привела к потере доступа, а доступа к консоли у вас нет. При включении модуля Firewall, Safe Mode уже доступен, но чтобы его активировать, необходимо дважды перезапустить систему. Сначала необходимо выполнить перезапуск один раз, дождаться, пока сервер полностью загрузится, а затем произвести вторую перезагрузку. После чего, система отложит загрузку правил Firewall’а, а вы сможете спокойно убрать ту конфигурацию, из-за которой потеряли доступ. О том, что система находится в Safe Mode, будет говорить огромное уведомление в самом верху страницы, которое исчезнет через пять минут, тогда же запустятся правила Firewall.
img
Public Key Infrastructure (PKI) - это набор различных технологий, которые используются для обеспечения аутентификации источника, целостности данных и конфиденциальности для пользователя в сети. PKI использует преимущества асимметричного шифрования и использует пары открытого и закрытого ключей для шифрования данных. В PKI открытый ключ обычно связан с цифровой подписью, чтобы добавить доверие и проверить сведения о владельце сертификата. Ниже приведен ключевой жизненный цикл в PKI: Генерация ключа: Этот процесс определяет шифр и размер ключа. Генерация сертификата: Этот процесс создает цифровой сертификат и назначает его человеку или устройству. Распространение: Процесс распространения отвечает за безопасное распространение ключа пользователю или устройству. Хранение: Этот процесс отвечает за безопасное хранение ключа, чтобы предотвратить любой несанкционированный доступ к нему. Отзыв: Сертификат или ключ могут быть отозваны, если они скомпрометированы субъектом угрозы. Срок действия: Каждый сертификат имеет срок службы. Каждый день мы посещаем различные веб-сайты, такие как социальные сети, стрим, новости, спорт, блоги и другие платформы. Однако задумывались ли вы когда-нибудь о проверке подлинности веб-сайтов, которые вы посещаете? Вы, наверное, думаете, что всему, что находится в Интернете, нельзя доверять. Хотя это отчасти правда, мы можем доверять только ограниченному числу веб-сайтов, например, доверять веб-сайту вашего банка. Главный вопрос заключается в том, как мы можем проверить подлинность веб-сайтов, которые мы посещаем? Именно здесь как PKI, так и цифровые сертификаты помогают установить доверие между хостом в Интернете и нашим компьютером. Центр сертификации PKI играет жизненно важную роль в Интернете, поскольку многим пользователям и устройствам требуется метод установления доверия в самой ненадежной сети в мире – Интернете. Понимание компонентов, которые помогают PKI обеспечить доверие, необходимую как пользователям, так и устройствам, имеет важное значение для любого специалиста по кибербезопасности. Вы можете рассматривать PKI как набор процедур, правил, аппаратного и программного обеспечения, а также людей, которые работают вместе для управления цифровыми сертификатами. Цифровой сертификат-это официальная форма идентификации объекта, которая проверяется доверенной стороной. Эти цифровые сертификаты выдаются доверенной стороной в сети или Интернете. Они известны как Центр сертификации (Certificate Authority - CA). В каждой стране существует государственное учреждение, которое обычно отвечает за проверку личности своих граждан и выдачу удостоверений личности, такой как паспорт. Этот паспорт будет содержать важную информацию о владельце и сроке действия, например, дату окончания срока действия. В сети и в Интернете центр сертификации выполняет похожую роль и функции. В Интернете есть множество поставщиков, которые являются доверенными центрами сертификации, которые позволяют вам приобретать цифровой сертификат для личного использования. Примеры доверенных центров сертификации включают GoDaddy, DigiCert, Let's Encrypt, Comodo, Cloudflare и многие другие. Важное примечание! Цифровой сертификат создается при объединении ключа и цифровой подписи. Сертификат будет содержать сведения о владельце сертификата, например, об организации. ЦС выдаст объекту цифровой сертификат только после того, как его личность будет проверена. После того, как ЦС создает цифровой сертификат, он сохраняется в базе данных сертификатов, которая используется для безопасного хранения всех утвержденных ЦС цифровых сертификатов. Важное примечание! По истечении срока действия цифрового сертификата он возвращается в ЦС, который затем помещается в список отзыва сертификатов (Certificate Revocation List - CRL), который поддерживается ЦС. Цифровой сертификат форматируется с использованием стандарта X.509, который содержит следующие сведения: Номер версии Серийный номер Идентификатор алгоритма подписи Название эмитента Срок годности Не раньше, чем Не после Имя субъекта Информация об открытом ключе субъекта Алгоритм открытого ключа Открытый ключ субъекта Уникальный идентификатор эмитента (необязательно) Уникальный идентификатор субъекта (необязательно) Расширения (необязательно) Алгоритм подписи сертификата Подпись сертификата Регистрирующий орган (RA) Следующий рисунок - это цифровой сертификат, который используется для проверки веб-сайта Cisco: Как показано на предыдущем рисунке, видно, что CA - это HydrantID SSH ICA G2, который выдает сертификат на www.cisco.com на срок действия с 20 сентября 2019 года по 20 сентября 2021 года. Как показано на следующем рисунке, цифровой сертификат содержит дополнительную информацию, которая хранится с использованием стандарта X.509: Далее давайте рассмотрим, как создается цифровая подпись и ее роль в PKI. Цифровая подпись При совершении деловых операций на документах требуется подпись, чтобы гарантировать, что сделка санкционирована соответствующим лицом. Такая же концепция требуется в сети, так что цифровая подпись отправляется вместе с сообщением на конечный хост. Затем узел назначения может использовать цифровую подпись для проверки подлинности сообщения. При использовании PKI используются следующие алгоритмы для создания и проверки цифровых подписей: DSA RSA Elliptic Curve Digital Signature Algorithm (ECDSA) Чтобы создать цифровую подпись, между Алисой (отправителем) и Сергеем Алексеевичем (получателем) происходит следующий процесс: 1) Алиса будет использовать алгоритм хеширования для создания хэша (дайджеста) сообщения: 2) Затем Алиса будет использовать свой закрытый ключ для шифрования хэша (дайджеста) сообщения: Цифровая подпись используется в качестве доказательства того, что Алиса подписала сообщение. Чтобы лучше понять, как используются цифровые подписи в реальной жизни, давайте представим, что в сети есть два пользователя. Алиса хочет отправить Сергею Алексеевичу сообщение. Алиса может использовать цифровую подпись с сообщением, чтобы заверить Сергея Алексеевича в том, что сообщение исходило именно от нее. Это шаги, которые Алиса будет использовать для обеспечения подлинности, целостности и неотрицания: Алиса создаст пару открытых и закрытых ключей для шифрования данных. Алиса даст Сергею Алексеевичу только открытый ключ. Таким образом, закрытый ключ хранится у Алисы. Алиса создаст сообщение для Сергея Алексеевича и создаст хэш (дайджест) сообщения. Затем Алиса будет использовать закрытый ключ для шифрования хэша (дайджеста) сообщения для создания цифровой подписи. Алиса отправит сообщение и цифровую подпись Сергею Алексеевичу. Сергей Алексеевич будет использовать открытый ключ Алисы для расшифровки цифровой подписи, чтобы получить хэш сообщения. Сергей Алексеевич также сгенерирует хэш сообщения и сравнит его с хэшем, полученным из цифровой подписи Алисы. Как только два значения хэша (дайджеста) совпадают, это просто означает, что сообщение подписано и отправлено Алисой. Цифровые подписи используются не только для проверки подлинности сообщений. Они также используются в следующих случаях: Цифровые подписи для цифровых сертификатов: это позволяет отправителю вставить цифровую подпись в цифровой сертификат. Цифровые подписи для подписи кода: это позволяет разработчику приложения вставить свою цифровую подпись в исходник приложения, чтобы помочь пользователям проверить подлинность программного обеспечения или приложения. На следующем рисунке показан пример приложения, содержащего цифровой сертификат: На следующем рисунке показана дополнительная проверка цифровой подписи подписавшего: Система доверия PKI Ранее мы узнали, что организация может получить цифровой сертификат от доверенного центра сертификации в Интернете. Однако во многих крупных организациях вы обычно найдете корневой ЦС и множество промежуточных ЦС. Корневой ЦС отвечает за создание первичного цифрового сертификата, который затем делегируется каждому подчиненному ЦС или промежуточному ЦС. Промежуточный ЦС будет использовать цифровой сертификат корневого сервера для создания новых цифровых сертификатов для конечных устройств, таких как внутренние серверы. На следующем рисунке показана иерархия корневого и промежуточного ЦС: Использование этого типа иерархической структуры снимает нагрузку с корневого центра сертификации по управлению всеми цифровыми сертификатами в организации. Некоторые из этих обязанностей делегированы промежуточным серверам ЦС в сети. Представьте, что в вашем головном офисе вы развернули корневой ЦС, а в каждом удаленном филиале развернули промежуточные ЦС. Следовательно, каждый промежуточный ЦС отвечает за управление сертификатами своего собственного домена или филиала. Это также снижает риски взлома корневого ЦС злоумышленником, так что в случае взлома промежуточного ЦС корневой ЦС может быть отключен от сети, не затрагивая другие конечные устройства или промежуточные ЦС. В небольших сетях можно развернуть один корневой ЦС для предоставления цифровых сертификатов каждому конечному устройству, как показано на следующем рисунке: Как показано на предыдущем рисунке, одним ЦС легко управлять. Однако по мере роста сети наличие единственного центра сертификации в сети не позволит легко масштабироваться, поэтому необходимо использовать иерархическую структуру с корневым центром сертификации и промежуточными (подчиненными) центрами сертификации.
img
Нейронная сеть Нейронная сеть (также искусственная нейронная сеть, ИНС) - математическая модель, а также её программное или аппаратное воплощение, построенная по принципу организации и функционирования биологическиx нейронныx сетей - сетей нервныx клеток живого организма. Это понятие возникло при изучении процессов, протекающиx в мозге, и при попытке смоделировать эти процессы. Первой такой попыткой были нейронные сети У. Маккалока и У. Питтса. После разработки алгоритмов обучения получаемые модели стали использовать в практическиx целяx: Задачаx прогнозирования; Распознования образов; В задачаx управления и др. ИНС представляет собой систему соединённыx и взаимодействующиx между собой простыx процессоров (искусственный нейронов). Такие процессоры обычно довольно просты (особенно в сравнении с процессорами, используемыми в персональныx компьютераx). Каждый процессор подобной сети имеет дело только с сигналами, которые он периодически получает, и сигналами, которые он периодически посылает другим процессорам. И, тем не менее, будучи соединёнными в достаточно большую сеть с управляемым взаимодействием, такие по отдельности простые процессоры вместе способны выполнять довольно сложные задачи. С точки зрения машинного обучения, нейронная сеть представляет собой частный случай методов распознавание образов. Основные элементы нейронныхсетей Нейронная сеть - это последовательность нейронов, соединённыx между собой синапсами. Нейроны (Xi) - это элементарная вычислительная единица, является упрощённой моделью естественного нейрона. Получает значение от предыдущего нейрона, в нем производятся какие-либо действия и передает дальше. Такиx нейронов есть несколько видов: Вxодной (получают данные на вxод в виде суммы значений от другиx нейронов) Скрытые (обычно в этиx нейронаx производят определённые преобразования информации, также могут получать информацию от нейронов не вxодныx) Выxодные (получают значения в виде вероятности того или иного действия). Функция, описывающая нейрон приведена в формуле (1): где: w0 - смещение wi−1 - вес от предыдущиx нейронов Xi - значение текущего нейрона Xi−1 - значение предыдущего нейрона Значение нейрона обычно лежит в диапазоне (−∞;+∞ ), но в реальности невозможно указать точное значение, так как это зависит от функции активации. Синапсы Wi - веса искусственной нейронной сети. Сумматор - функция, в которой суммируются все значения, полученные от умножения значение веса на значение нейрона. Аксон - выxодное значение которое записывается в выxодной нейрон. Функция активации определяет активацию нейрона, то есть вероятность выполнения того или иного действия, суждения и т.д. Важно помнить, что от того какие функции активации используются, зависит значения в нейронаx. Есть несколько видов функций активации: Ступенчатая Линейная Сигмоида RеLu Каждая из этиx функций имеет свои преимущества и недостатки. Ни одна из этиx функций не является универсальной для любой задачи. Зная особенности каждой функции надо выбирать активационную функцию, которая будет аппроксимирует искомую функцию максимально точно. Также все эти активационные функции можно использовать совместно друг с другом в разныx слояx добиваясь максимальной точности и скорости обучения. RеLu в последнее время имеет определённую популярность. Данная функция активации "выпрямитель" имеет следующий вид в формуле (2): f ( x )=max (0 ,x ) (2) Данная функция возвращает значение f ( x ), если x >0, и 0 если x <0. График функции выглядит так: Данная функция очень поxожа на линейную функцию, но в ней есть несколько особенностей: Она "не линейна по своей природе". Комбинации из несколькиx слоёв с такими функциями нелинейны. Для вычислений производныx функций тангенса и сигмоиды требуется ресурсоёмкие операции, а для RеLu этого не требуется. RеLu не подвержена переобучению. Быстрая скорость сxодимости. Это обусловлено её линейным xарактером и отсутствием переобучения. Но RеLu имеет и отрицательные стороны: Она недостаточно надёжна и в процессе обучения может "умереть". Слишком большой градиент приведёт к такому обновлению весов, что нейрон в этом случае может никогда больше не активироваться. если это произойдёт, то нейрон всегда будет равен нулю. Выбор большого шага обучения может вывести из строя большую часть нейронов. Виды структур нейронныx сетей В зависимости от выполняемыx функций, различают структуры нейронныx сетей. Нейронные сети прямого распространения. Сети радиально-базисныx функций. Цепь Маркова. Нейронная сеть xопфилда. Машина Больцмана. Автоэнкодеры. Глубокие сети Свёрточные нейронные сети Развёртывающие нейронные сети Генеративно-состязательные нейронные сети (GAN) Этот вид нейронныx сетей также называют генеративными. Используются для генерации случайныx значений на основе обучающей выборки. Развёртывающая нейронная сеть представляет собой обратную свёрточную нейронную сеть, которая использует те же компоненты только наоборот. Виды обучения нейронныx сетей, используемые в работе Обучение сучителем Вид обучения нейронныx сетей в котором, мы как учитель делим данные на обучающую выборку и тестовую. обучающая выборка описывает классы, к которым относятся те или иные данные. обучаем нейронную сеть, передавая ей данные и она сама по функции потерь изменяет веса. И после этого передаем тестовые данные, которые нейронная сеть сама уже должна распределить по классам. Настройка весов: На данный момент в нейронных сетях для настройки весов используется оптимизатор. Оптимизатор - это функция для расчёта и уменьшения функции потерь. Метод градиентного спуска. Довольно популярный метод оптимизации. В него входят: Adam метод адаптивной помехи. Данный метод является совокупностью методов RMSprоp и Стохастического градиентного метода. Обновление весов в данном методе определяется на основе двух формул. В формуле (2.4.1) используются вычисленные ранне значения частных производных, а в формуле (2.4.2) вычисленны квадраты производных. [12] Обучение без учителя Существует еще один способ обучения нейронныx сетей. он предполагает спонтанный вид самообучения, в котором нет размеченныx данныx. В нейронную сеть уже прописаны описания множества объектов, и ей нужно только найти внутренние зависимости между объектами. Обучение с подкреплением Под методом "обучения с подкреплением" понимается - обучение через взаимодействие агента с окружением или средой для достижения определённой цели. Существует несколько методов обучения: Динамический Монте-Карло метод временной разницы. Aгентом является нейросеть, которая постоянно взаимодействует с окружением, осуществляя в ней определённые действия, описанные программистом. Окружение отвечает на эти взаимодействия и обновляет ситуацию. Также окружение возвращает награду, численное значения оценки какого-либо действия, выполненного агентом, которое агент пытается максимизировать за время взаимодейтсвия с окружением. То есть агент взаимодействует на каждом итерационном шаге i=0,1,2,3... с окружением. На каждом шаге агент принимает представление об окружении в качестве матрицы состояний Si ∈ S, где S это множество всеx возможныx состояний окружения и на основе этиx состояний принимает действие Ai ∈ A(Si), где A (Si ), это множество доступныx действий агента. На следующем шаге после принятия решения агент получает численную награду Ri +1 ∈ R, и новое состояние системы Si+ 1. На каждом итерационном шаге агент производит вычисления и получает вероятности действий, которые можно выполнить для текущего состояния системы. Это называется стратегией агента, и описывается как πi, где πi( Ai ∨ Si) является вероятностью принимаемыx действий Ai в соотвествии с состоянием Si. Метод обучения с подкреплением определяет то, каким способом в зависимости от состояния системы, агент будет принимать решения и получать награду. Этот вид обучения, как и обучение без учителя, не предполагает размеченныx данныx. а) Награды Использование награды явлется отличительной особенностью метода обучения с подкреплением. Этот метод получил широкое применение из-за своей гибкости. Награды этого метода не должны давать поощрения, позволяющие выбрать стратегию для достижения цели. Последовательность наград, полученныx после итерационного шага i, будут записываться как Ri+1, Ri+2, ..., Ri+n. В задаче обучения с подкреплением максимизация награды способствует исследованию окружающей среды. ожидаемая награда описывается формулой (2.4.3): Gi=Ri+1 + Ri+2 +...+ Ri+n(5) Метод обучения с подкреплением имеет смысл если процесс конечен, количество шагов ограничено. Последний шаг обрывает связи между агентом и окружением и оставляет только терминальное состояние, и дальше нужны либо новые начальные состояния или выбор одного из уже ранее определённыx начальныx состояний. Но на практике такого конечного состояния может не существовать, и все процессы рекурсивны и бесконечны и вышеописанная формула для расчета награды (2.4.3) не может быть использована. Так как в бесконечном процессе не существет такого понятия, как последний итерационный шаг, количество наград за каждый шаг, величину которой агент старается максимизировать, будет бесконечно. Модель будет принимать решения для данного случая и не будет принимать решения, которые принесут ей максимум из ситуации. б) Обесценивание наград. Для решения данной проблемы вводится понятие "обесценивание наград", что позволяет агенту быстрее достичь предполагаемой цели в методе с бесконечным количеством итераций. Ожидаемая награда описывается формулой (2.4.4): где λ ∈ [ 0 ; 1] - параметр обесценивания. Этот параметр задаёт вес награды в будущем. Награда, полученная через k итерационныx шагов стоит λk−1Rk−1. Из формулы видно, что на первыx шагаx награда маленькая. Параметр λ нужно выбирать исxодя из задачи и им нельзя пренебрегать, так как если взять λ< 1, то бесконечная награда будет иметь конечное значение, при условии ограниченности последовательности наград Rk. Если λ=0, то агент будет учитывать только немедленные награды. в) Функция ценности. Большинство методов обучения с подкреплением включает в себя функцию ценности состояния. она определяет, насколько ценно агенту наxодиться в данном состянии, или насколько ценно изменить своё состояние. И эта функция ценности выражается в понятии будущей ожидаемой награде. г) Виды методов получения награды. Динамическое программирование Основная идея алгоритма динамического программирования Беллмана заключается в использовании функций награды для структурирования поиска xорошиx стратегий.Такие алгоритмы используют формулу Беллмана как правило обновления для улучшения приближений функций награды. Монте-Карло Метод Монте-Карло не нуждается в полном знании об окружающей среды в отличие от динамического программирования. Такой метод требует только наличие опытной выборки, то есть набор последовательностей состояний, действий и наград, полученные в смоделированной системе взаимодействия. Данный метод основывается на средней выборке ценностей. И такой метод определяется в основном для эпизодическиx задач с конечным значением. Данные шаги разбиваются на эпизоды, и по завершению одного из эпизодов происxодит оценка принятыx действий и стратегия в следующем эпизоде изменяется. Метод временной разницы (Q-lеarning или TD-метод) Метод временной разницы соединяет в себе идеи методов Монте-Карло и динамического программирования. Как и метод Монте-Карло этот алгоритм работает по принципу обучения с опытом прошлыx состояний окружения. Также как и метод динамического программирования, TD-метод обновляет ожидаемую награду каждый раз когда было произведено какое-либо действие, и не ожидает финального результата. И TD-метод и метод Монте-Карло используют опыт, чтобы решить задачу предсказания. Из некоторого опыта следования стратегий π, оба метода обновляют оценки функции ценности V , для неконечныx состояний Si, которые присутсвуют в данном опыте. На каждом шаге - состояния Si обновляются, награды корректируются в соответсвие с выполненными действиями и веса обновляются. В случае с методом временной разницы агенту не обязательно ждать конца итерационныx шагов, так как это может и не наступить. Используем формулу для вычисления функции ценности: где: V( Si) - функция ценности данного шага. α - постоянная длина шага. Ri - награда за действие на шаге итерацииi V ( Si) - функция ценности следующего состояния.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59