По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
На дворе 1988 год – «Microsoft» выпустила операционную систему «MS DOS 4.0», на вершине Эвереста проведена первая в истории телетрансляция, а за окном неспешно протекает эпоха дутых, бесформенных курток :). Казалось бы, все здорово, но ребята из CCITT решают подлить масла в огонь и релизят первое описание ISDN (Integrated Services Digital Network), о котором мы и поговорим. А что это? В целом, ISDN это набор стандартов для передачи голоса, видео, блоков данных сети передачи данных и других сервисов по обычным каналам ТфОП (PSTN) - телефонной сети общего пользования. Одновременно. До появления Integrated Services Digital Network, телефонные системы рассматривались как инструмент передачи голоса, с некоторыми сервисами на сети. ISDN использует временное мультиплексирование TDM (Time Division Multiplexing) и может работать с голосом и данными по одним и тем же линиям. В классических телефонных системах такого и близко не было :) Сам по себе ISDN представляет гибрид, обеспечивая как доступ в сеть с коммутацией каналов, так и в сеть с коммутацией пакетов. Обеспечивая цифровую передачу голоса или данных, ISDN обеспечивает высокое качество передаваемых данных. По скорости: разгон до 64 кбит/с по абонентской линии и до 128 кбит/с по BRI интерфейсу в обе стороны (загрузка/передача). В контексте семиуровневой модели OSI (Open Systems Interconnection), ISDN уютно расположился на 1, 2 и 3 уровнях (физический, канальный и сетевой). К первому уровню мы можем отнести BRI/PRI интерфейсы, то есть именно физические соединения, ко второму, протокол контроль ошибок физический линии (LAPD), а на третьем, то есть сетевом, расположился ОКС7 (SS7, Signaling System 7). ISDN интерфейсы Мы можем отметить следующие интерфейсы стандарта ISDN: Basic Rate Interface (BRI) - в BRI интерфейсе существуют два B – канала, которые созданы для передачи данных и 1 D – канал, которые переносит сигнализацию. B – каналы разгоняются до 64 кбит/с, а D – канал гоняет на скорости 16 кбит/c. Кстати, B – канала живут свои жизнью независимо – например, по первому может установиться TCP/IP сессия, а по второму передаваться факс; Более подробно про BRI можно почитать в нашей статье; Primary Rate Interface (PRI) - слышали про Е1 - поток? ИКМ 30? Это оно и есть. Условно говоря, PRI состоит из D – сигнального канала (двух, в случае Е1) и от 23 до 30 B – каналов, или как их еще называют, тайм слотов (от TDM).; Мы тут сравнивали PRI и SIP. Почитать можно тут :) Broadband-ISDN (B-ISDN) - это так называемый «широкополосный ISDN». Это некое уточнение, спецификация к стандарту, которая расширяет параметры обычного ISDN. Он создан для сетевых служб, которые требуют широкую полосу пропускания; ISDN службы Условно, сервисы, которые отдает ISDN можно поделить на три категории: Передача информации - если говорить прямым языком, «перенос» данных (голос, видео и данные) между пользователями. Сервис живет на нижних трех уровнях модели OSI. ISDN сможет «переносить» данные поверх сетей с коммутацией – каналов/пакетов/фреймов. В данном случае, ISDN не производит никаких манипуляций с содержимым блоков данных; Телеслужбы - то, что живет от 4 до 7 уровня модели OSI. Вот тут, сеть может менять содержимое пакетов по определенным алгоритмам. ISDN сможет работать с телетекстом, факсом, видеоконференциями. То есть по факту, это некие данные, которые исходят от приложений; Дополнительные услуги - голосовая почта, вторая линия прочие сервисы, которые могут строить компании поверх ISDN. И зарабатывать на этом :); Основные принципы ISDN Как мы сказали в начале статьи, ISDN живет по правилам, описанные CCITT (сейчас это всем известный ITU-T). Вот на чем ребята из ITU – T делают основные акценты: Поддержка разнородных приложений в ISDN; Поддержка не только голосовых сервисов; Акцент на 64 кбитных коннекциях; Интеллектуальность сети; Распределенная по уровням архитектура ISDN (по аналогии с OSI); Огромное разнообразие конфигурации сети;
img
Друг! Недавно в нашей статье мы рассказывали, как произвести базовую настройку телефонов в Cisco CME (CUCME) используя интерфейс командной строки. Сегодня мы сделаем то же самое, но уже при помощи графического интерфейса Cisco Configuration Professional (CCP) , про установку которого можно почитать здесь. /p> Добавление CME роутера в CCP Первым делом настроим наш роутер как CME. Для этого выбираем наш роутер в списке Select Community Member и нажимаем Configure и выбираем вкладку Unified Communications Features. Здесь нам будут доступны следующие опции: Cisco Unified Border Element (CUBE) – эта опция настраивает роутер как шлюз для IP телефонии для IP-IP сервисов, таких как IP Telephony Service Provision (IP-TSP). CUBE предоставляет типичные пограничные сервисы такие как NAT/PAT, и добавляет к ним VoIP функциональность для билинга, безопасности, контроля, QoS и прочего. IP Telephony – CUCME – CCP настраивает роутер как отдельную CME систему. IP Telephony – SRST – Позволяет IP телефонам использовать CME роутер как резервное устройство, если они потеряли связь с кластером CUCM. IP Telephony – Cisco Unified Call Manager Express as Cisco Unified Survivable Remote Site Telephony – предоставляет то же самое что и SRST, но с полным набором функций CME. Однако из-за этого уменьшается количество поддерживаемых телефонов. TDM Gateway – добавляет функционал шлюза, который может быть сконфигурирован вместо или совместно с CME. Media Resources – позволяет настроить цифровой сигнальный процессор DSP. Нам нужно поставить галочку IP Telephony, выбрать пункт CUCME – Cisco Unified Communications Manager Express, нажать ОК и затем в открывшемся окне нажать Deliver, после чего на маршрутизаторе будут произведены необходимые начальные настройки (какие именно команды будут применены можно увидеть в окне предпросмотра). Настройка Telephony Service Cisco предоставляет графический интерфейс для конфигурации ephone и ephone-dn (что это такое можно почитать тут). Однако просто взять и добавить ephone-dn (тут они называются “Extensions”) и ephone (они называются “Phones”) нельзя, интерфейс выдаст нам ошибку, что сначала нужно настроить Telephony Service Поэтому займемся настройкой Telephony Service. Чтобы это сделать нужно перейти в меню Configure – Unified Communications – Telephony Settings. Здесь нам необходимо настроить следующие поля: Supported Endpoints – какой протокол будут использовать телефоны (SIP, SCCP или оба) Maximum number of phones – максимальное количество ephone (команда max-ephones) Maximum number of extensions – максимальное количество ephone-dn (команда max-dn) Phone registration source IP address – адрес регистрации телефонов (команда ip source address) Иногда CCP может не обновлять конфигурацию CME, после внесения изменений. Если вы указали все необходимые настройки, но все еще получаете ошибку, что нужно настроить Telephony Settings, то в этом случае нужно вручную обновить конфигурацию, нажав кнопку Refresh. Если вы используете GNS3 для эмуляции роутера с CME, то при попытке войти в меню Telephony Settings будет появляться ошибка “An internal error has occurred”, и начальные настройки нужно ввести через интерфейс командной строки маршрутизатора. После того как мы заполнили поля нажимаем ОК, а затем Deliver. Теперь мы можем добавлять телефоны. Добавление телефонов, номеров и пользователей в CCP Начнем с добавления Extension, который технически является ephone-dn. Переходим во вкладку Configure – Unified Communications – Users, Phones and Extensions – Extensions и внизу нажимаем Create Здесь заполняем следующие поля: Primary Number – номер телефона (единственное обязательное поле) Secondary Number – дополнительный номер Name to be displayed on phone line – имя, которое будет отображаться на телефоне Description – описание Active calls allowed on a Phone Button – количество одновременных звонков (single-line или dual line) После заполнения нужных полей нажимаем ОК и Deliver, после чего телефон появляется в таблице с номерами. Теперь перейдем к настройке Phones. Для этого переходим во вкладку Configure – Unified Communications – Users, Phones, and Extensions – Phones (или Phones and Users, в зависимости от версии) и нажимаем Create. Здесь нам нужно заполнить два обязательных поля: модель телефона Cisco, который мы хотим добавить и его mac адрес, в формате xxxx.xxxx.xxxx . Внизу в столбце Available Extensions появятся созданные нами номера. Нам нужно перенести необходимый номер в правую таблицу, нажав кнопку со стрелкой вправо, выбрав номер линии и указав ее тип и тип звонка (в зависимости от версии CCP, привязка Phone к Extension может производиться в меню создания пользователя). В этом же окне мы можем создать пользователя. Используя свой аккаунт, пользователь может управлять настройками своего телефона через веб-интерфейс. Для этого переходим во вкладку User и указываем логин в строке User ID, а также пароль для входа. При создании юзера из этого меню, он будет ассоциирован с этим телефоном. В зависимости от версии CCP, может меняться местонахождение этой вкладки, и она может быть расположена в Configure – Unified Communications – Users, Phones, and Extensions – User Settings. Применяем настройки также нажатием клавиш ОК и Deliver. Также в CCP можно импортировать большое количество экстеншенов и телефонов в файлах .CSV через Bulk Import Wizard, который находится на панели справа. Также при помощи CCP можно проверить работоспособность системы и телефонов, через меню Configure – View – IOS Show Commands, где из выпадающего списка можно выбрать команду show и CCP отобразит ее вывод.
img
Python - один из самых популярных языков программирования. Однако в CentOS 8 он не установлен по-умолчанию. В более ранних выпусках CentOS по умолчанию была доступна неверсированная команда Python. После установки CentOS, можно было перейти в оболочку Python, просто запустив команду «python» в терминале. Как это ни парадоксально, CentOS 8 не имеет неверсионной команды Python по умолчанию. Напрашивается вопрос, почему? RedHat заявляет, что этот выбор сделан «чтобы избежать блокировки пользователей в конкретной версии Python». В настоящее время RedHat 8 неявно использует Python 3.6 по умолчанию, хотя Python 2.7 дополнительно предоставляется для поддержки существующего программного обеспечения. Ранее неверсионная команда Python в дистрибутивах CentOS, хотя и была удобной, создавала определенные проблемы. Неверсионный Python обычно указывает на интерпретатор Python 2, но поскольку Python 2 сейчас находится на EOL (конец срока службы), это становится проблематичным по нескольким причинам. Простое перенаправление команды на Python 3 может показаться несложным решением, но на многих уровнях это будет проблематично из-за возможной путаницы с версионированием. Вместо того, чтобы продолжать указывать команду «python» на версию Python по умолчанию из-за знакомства или указывать на Python 3, чтобы идти в ногу со временем, был сделан выбор больше не включать стандартную команду «python». В этом руководстве мы рассмотрим установку как активно используемой версии Python 2, так и новой версии Python 3 в CentOS 8 и Red Hat Enterprise Linux (RHEL) 8. Установка Python 2 Шаг 1. Обновление среды Всегда полезно начинать с проверки того, что все наши системные пакеты обновлены перед установкой нового программного обеспечения. Для этого мы собираемся воспользоваться новым программным обеспечением для управления пакетами DNF. # dnf update -y Шаг 2: Установите Python 2 Теперь, когда среда обновлена, давайте продолжим и будем использовать DNF для установки Python 2. К счастью, и Python 2, и 3 включены в репозитории базовых пакетов CentOS 8, поэтому установка выполняется просто. # dnf install python2 -y Шаг 3: Проверьте установку Python 2 Чтобы убедиться, что Python 2 установлен, мы можем запустить простую команду «python2» с флагом версии. # python2 -V Python 2.7.16 Шаг 4: Запуск Python 2 Впоследствии, чтобы получить доступ к оболочке Python 2, мы можем выполнить следующую команду. # python2 Python 2.7.16 (default, Nov 17 2019, 00:07:27) [GCC 8.3.1 20190507 (Red Hat 8.3.1-4)] on linux2 Type "help", "copyright", "credits" or "license" for more information. >>> Готово! Python 2 теперь установлен! Следует отметить, что PIP-установщик пакетов Python также устанавливается по умолчанию при установке Python 2, поэтому вы сможете сразу начать работу с пакетами Python. Установка Python 3 Шаг 1. Обновление среды Еще раз давайте убедимся, что наши системные пакеты обновлены. # dnf update -y Шаг 2: Установите Python 3 Теперь мы готовы установить Python 3. # dnf install python3 -y Шаг 3: Проверьте установку Python 3 Мы можем проверить установку и версию Python 3 так же, как и в Python 2. # python3 -V Python 3.7.5rc1 Шаг 4: Запуск Python 3 Затем мы можем войти в среду оболочки Python 3, выполнив следующую команду. # python3 Python 3.6.8 (default, Nov 21 2019, 19:31:34) [GCC 8.3.1 20190507 (Red Hat 8.3.1-4)] on linux Type "help", "copyright", "credits" or "license" for more information. >>> Как и в случае установки Python 2, pip3 также включается при установке Python 3. Вот и все! Теперь можно начинать работу с Python на вашем сервере CentOS 8. Установка версии Python по умолчанию Вы должны были заметить, что для использования Python 3, это команда python3 и python2 для Python 2. Что делать, если ваши приложения настроены на обращение к python, который недоступен для всей системы? # python bash: python: command not found... Вы можете использовать механизм альтернатив, чтобы включить неверсированную команду python для всей системы и установить для нее определенную версию: # alternatives --set python /usr/bin/python3 Для Python 2: # alternatives --set python /usr/bin/python2 Чтобы посмотреь настроенную версию Python по умолчанию используйте следующую команду: # python -V Чтобы сбросить эту конфигурацию и удалить неверсионную команду python, выполните: # alternatives --auto python
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59