По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Создание единого устройства обработки пакетов - маршрутизатор (или коммутатор уровня 3, который теперь обычно называют просто коммутатором), являющийся наиболее распространенным примером, был до этого момента в центре внимания. Пришло время соединить маршрутизаторы вместе. Рассмотрим сеть на рисунке 1. Приложение, работающее на хосте A, должно получить некоторую информацию от процесса, запущенного на F. Устройства B, C, D и E, конечно же, являются обработчиками пакетов (маршрутизаторами). Для пересылки пакетов между хостами A и F маршрутизатор B будет вызван для пересылки пакетов на F, даже если он не подключен к F. аналогично маршрутизаторам C и D потребуется пересылать пакеты как A, так и F, даже если они не подключены ни к одному из этих хостов. В том разделе рассматривается следующий вопрос: Как сетевые устройства создают таблицы, необходимые для пересылки пакетов по свободным от петель путям в сети? Ответ гораздо сложнее, чем может показаться на первый взгляд, поскольку на самом деле в нем содержится несколько проблем: Как устройства узнают о топологии сети, какие каналы связи подключены к каким устройствам и назначениям. Как плоскости управления принимают эту информацию и создают в сети пути без петель? Как плоскости управления обнаруживают изменения в сети и реагируют на них? Каким образом уровни управления масштабируются для удовлетворения потребностей крупномасштабных сетей? Какие политики реализованы на уровне управления и как? Все эти проблемы будут рассмотрены далее. Обнаружение топологии Сетевые диаграммы обычно показывают всего несколько типов устройств, включая маршрутизаторы, коммутаторы, системы, подключенные к сети (различные типы хостов) и различные типы устройств (например, межсетевые экраны). Они часто связаны между собой каналами, представленными в виде линий. Пример представлен на рисунке 2. Сетевые диаграммы, как и многие другие формы абстракции, скрывают много информации, чтобы сделать встроенную информацию более доступной. Во-первых, сетевые диаграммы обычно находятся где-то между логическим и физическим представлением сети. Такие диаграммы обычно не показывают каждое физическое соединение в сети. Например, сетевая диаграмма может показывать связку каналов как одну линию связи или один физический провод, который был мультиплексирован как несколько логических каналов (например, Ethernet или какой-либо другой канал широковещательной передачи, который представляет собой один физический канал, используемый несколькими устройства для связи). Примечание В сетевой инженерии часто возникает некоторая путаница с термином мультиплексирование. Многие инженеры склонны рассматривать совместное использование двух виртуальных каналов как единственную форму сетевого мультиплексирования. Однако всякий раз, когда есть несколько устройств, совместно использующих одну линию связи, ситуация, в конечном счете требующая некоторой формы адресации, временного разделения трафика или частотного разделения трафика, используется мультиплексирование. Виртуализацию можно рассматривать как второй уровень мультиплексирования или мультиплексирование поверх мультиплексирования. Во-вторых, сетевые схемы часто не учитывают логическую сложность сервисов. Однако плоскость управления не маскирует такого рода сложности. Вместо этого плоскость управления должна собирать информацию о сети локально и с других плоскостей управления, объявлять ее другим устройствам, на которых работает плоскость управления, и создавать набор таблиц, которые плоскость данных может использовать для пересылки трафика через каждое устройство в сети от источника к месту назначения. В этой статье мы рассмотрим проблему: Как плоскость управления узнает о сети? Этот вопрос можно разбить на несколько частей: О чем пытается узнать плоскость управления? Или, возможно, каковы компоненты топологии сети? Как плоскость управления узнает об устройствах, подключенных к сети? Какие основные классификации используются при описании объявления информации о сети? Узлы сети, границы и достижимый пункт назначения. Первая проблема, которую необходимо решить, на самом деле является мета-вопросом: какие виды информации должна изучать и распространять плоскость управления, чтобы строить пути без петель в сети? Однако небольшое предупреждение по поводу следующего материала статьи: сетевые термины трудно однозначно определить, поскольку отдельные термины часто используются для описания множества "вещей" в сети, в зависимости от контекста, в котором они используются. Узел Узел либо обрабатывает пакеты (включая пересылку пакетов), либо отправляет пакеты, либо принимает пакеты в сети. Термин взят из теории графов, где их также можно назвать вершинами, хотя этот термин более широко применяется в сетевой инженерии. В сети есть несколько типов узлов, в том числе: Транзитный узел: любое устройство, предназначенное для приема пакетов на одном интерфейсе, их обработки и отправки на другом интерфейсе. Примерами транзитных узлов являются маршрутизаторы и коммутаторы. Их часто просто называют узлами, так они будут именоваться здесь в статье, а не транзитными узлами. Конечный узел: также называется конечной системой или хостом: любое устройство, предназначенное для запуска приложений, которые генерируют и/или принимают пакеты от одного или нескольких интерфейсов. Это сетевые источники и приемники, чаще всего эти узлы на самом деле называются хостами, а не конечными узлами, чтобы отличать их от shorthand узлов, что обычно означает транзитный узел. В этих двух определениях есть много очевидных дыр. Как должно называться устройство, которое принимает пакет на одном интерфейсе, завершает соединение в локальном процессе или приложении, генерирует новый пакет, а затем передает этот новый пакет из другого интерфейса? Проблема усложняется, если информация, содержащаяся в двух пакетах, примерно одинакова, как в случае с прокси-сервером или каким-либо другим подобным устройством. В этих случаях полезно классифицировать устройство как конечное или узел в определенном контексте, в зависимости от роли, которую оно играет по отношению к другим устройствам в контексте. Например, с точки зрения хоста прокси-сервер действует как устройство сетевой переадресации, поскольку работа прокси-сервера (в некоторой степени) прозрачна для хоста. Однако с точки зрения соседнего узла прокси-серверы являются хостами, поскольку они завершают потоки трафика и (как правило) участвуют в плоскости управления так же, как и хост. Граница (край) Граница - это любое соединение между двумя сетевыми устройствами, через которое пересылаются пакеты. Номинальный случай - соединение точка-точка (point-to-point), соединяющее два маршрутизатора, но это не единственный случай. В теории графов ребро соединяет ровно два узла. В сетевой инженерии существуют понятия мультиплексированных, многоточечных и других типов мультиплексированных каналов. Чаще всего они моделируются как набор соединений point-to-point, особенно при построении набора маршрутов без петель в сети. Однако на сетевых диаграммах мультиплексированные каналы часто изображаются как одна линия с несколькими присоединенными узлами. Достижимый пункт назначения Достижимый пункт назначения может описывать один узел или службу, или набор узлов или служб, доступных через сеть. Номинальным примером достижимого пункта назначения является либо хост, либо набор хостов в подсети, но важно помнить, что этот термин может также описывать службу в некоторых контекстах, таких как конкретный процесс, запущенный на одном устройстве, или множество вариантов службы, доступных на нескольких устройствах. Рисунок 3 иллюстрирует это. В сети, показанной на рисунке 3, достижимые пункты назначения могут включать: Любой из отдельных хостов, например A, D, F, G и H Любой из отдельных узлов, например B, C или E Служба или процесс, работающий на одном хосте, например S2. Служба или процесс, работающий на нескольких хостах, например S1. Набор устройств, подключенных к одному физическому каналу или границе, например F, G и H Этот последний достижимый пункт назначения также представлен как интерфейс на конкретном канале или на границе сети. Следовательно, маршрутизатор E может иметь несколько достижимых пунктов назначения, включая: Интерфейс на линии, соединяющей маршрутизатор E с C Интерфейс на линии, соединяющей маршрутизатор E с B Интерфейс на линии, соединяющей маршрутизатор E с хостами F, G и H Сеть, представляющая достижимость для хостов F, G и H Любое количество внутренних служб, которые могут быть объявлены как отдельные адреса, порты или номера протоколов Любое количество внутренних адресов, присоединенных к виртуальным каналам связи, которые не существуют в физической сети, но могут использоваться для представления внутреннего состояния устройства (не показано на рисунке3) Таким образом, концепция достижимого пункта назначения может означать множество разных вещей в зависимости от контекста. В большинстве сетей достижимый пункт назначения - это либо одиночный хост, одиночный канал (и хосты, подключенные к нему), либо набор каналов (и хосты, прикрепленные к этим каналам), объединенные в один достижимый пункт назначения. Теперь, почитайте материал про топологию сетей.
img
В данной статье мы посмотрим, что такое статические и динамические библиотеки. Местоположение библиотек по умолчанию. Определение используемых библиотек. Загрузка библиотек. Библиотеки это набор функций, которые могут использоваться в различных программах. Библиотеки могут быть статические (библиотека привязывается к определенной программе или софт содержит данную библиотеку в своем теле.) и динамическими (библиотеки грузятся в оперативную память и используются). Плюсы первого варианта нет проблемы совместимости, т. к. софт уже в себе содержит библиотеку, библиотека всегда с собой. Но при этом программы становятся большие по размеры и т.к каждая может загружать свои библиотеки, а иногда и одинаковые.  Второй вариант значительно лучше, сами программы по своему размеру меньше. Библиотека загружается один раз в оперативку. И следующая программа, которой необходимы такие же функции, берет и использует эти данные. По умолчанию библиотеки в Linux находятся в двух папках. Это корневая папка /lib в ней находятся библиотеки, которые используют программы, расположенные в корневой папке /bin. И есть вторая папка /usr/lib. В ней находятся библиотеки, которые используют программы расположенные /usr/bin.  Пути к библиотекам указаны файле /etc/ld.so.conf. Данный файл можно просмотреть стандартным способом, через утилиту cat. Видим, что написано включить все библиотеки, которые расположены по пути, указанном в файле. Те которые оканчиваются на .conf. Он просто включает в себя все настройки, которые находятся в конфигурационных файлах, в данной директории. Переходим в данную директорию. В данной директории мы можем видеть 2 файла конфигурации, в зависимости от версии и наполнения операционной системы их может быть и больше. Ну и соответственно в конфигурационных файлах находятся пути к директориям, где лежат необходимые для работы библиотеки. Если мы ставим какое, то свое программное обеспечение, которому необходимы дополнительные библиотеки, не идущие в составе дистрибутива linux, то в данной директории может создаться свой конфигурационный файл. Например: если мы используем систему виртуализации VMware, то к каждой VM устанавливаем VMware tools то данное программное обеспечение создаст свой конфигурационный файл с путями для своих библиотек. Переходим в директорию cd /etc/ и отсортируем так, чтобы в результатах все, что содержит ld. ls | grep ld. Получим следующее: Видим 3 основных конфигурационных файла. ld.so.conf - это файл конфигурации в котором написано откуда брать дополнительные библиотеки. Директория ls.so.conf.d в которой находятся дополнительные конфигурационные файлы и ld.so.cache это кэш библиотек. Он у нас выстраивается каждый раз для того, чтобы программы при необходимости при запросе библиотек не копались в файлах, а сразу брали из загруженного в оперативную память кэша. Т.е. если мы вносим какие-то изменения в файл конфигурации, добавляем какие-то конфигурационные файлы нам необходимо обновить этот кэш. Кэш обновляется командой ldconfig. Этого, собственно, достаточно, чтобы прогрузить все библиотеки в кэш. Давайте посмотрим, как, определить какими библиотеками пользуется какая программа. Для этого мы будем использовать команду ldd и путь к бинарному файлу. Например: Программа ls которая используется для вывода списка файлов в каталоге. Она находится в каталоге /bin/ls. В результате получим мы следующее: Мы видим, какие so использует данная программа и соответственно ссылки на них, где они расположены, собственно, so - это наши библиотеки в данном случае. Возможно добавление библиотек вручную, это может потребоваться если мы ставим совершенно стороннее программное обеспечение, которое очень трудно взаимодействует с Linux или устаревшее. Т.е. которое само не может создать конфигурационный файл и разнести библиотеки в системные директории Linux. Если мы хотим сделать это вручную, тогда нам необходим тот самый файл /etc/ld.so.conf. В данный файл мы можем дописать путь к файлу конфигурации библиотек тех, которые нам нужны. Либо есть более легкий вариант с использованием переменной export LD_LIBRARY_PATH и указать путь к тем особенным библиотекам, которые будет использовать наша "особенная" программа. Обычно все стороннее программное обеспечение устанавливается в папку /opt. Итоговый вариант будет выглядеть как: export LD_LIBRARY_PATH=/opt/soft/lib и когда пройдет экспорт, у нас попробует погрузится из этого пути библиотека, но перед этим необходимо не забыть сделать ldconfig.
img
На этот раз мы спешим поделиться процессом настройки подключения (SIP – транка) на FreePBX 13 на примере оператора Beeline. Настройка транка Настройка транка от данного оператора не отличается какими-то особенным параметрами – все происходит так же, как и в случае других операторов. После покупки аккаунта, вам должны предоставить следующие данные: Опция В нашем примере Телефонный номер +74956661313 Логин(UserID) 74956661313 Пароль test Сервер sip.beeline.ru Домен sip.beeline.ru OutboundProxy msk.beeline.ru (DNS SRV-запись) Создаем новый транк. Для этого необходимо перейти по следующему пути: Connectivity → Trunks. Далее необходимо кликнуть на кнопку создания нового транка (+ Add Trunk). Выбираем опцию создания SIP (chan_sip) Trunk. Нужно присвоить транку имя и указать Outbound CallerID (номер, который вы получили от провайдера). Далее переходим во вкладку sip Settings и вносим необходимые настройки в поле PEER Details вкладки Outgoing: Ниже приведены настройки для поля PEER Details в текстовом виде, для удобства: username=74956661313 //ваш логин (он же номер) type=friend secret=test //ваш пароль outboundproxy=msk.sip.beeline.ru insecure=port,invite host=sip.beeline.ru fromuser=74956661313 fromdomain=sip.beeline.ru dtmfmode=rfc2833 disallow=all directmedia=no defaultuser=74956661313 context=from-trunk allow=alaw&ulaw Далее переходим во вкладку Incoming и настраиваем строку регистрации: Для оператора Билайн строка регистрации имеет следующий вид: Логин:пароль@sip.beeline.ru/ваш_номер Логин – это ваш так называемый AuthUserID Нажимаем Submit и Apply Config. Маршрутизация вызовов Для настройки входящего маршрута переходим в Connectivity → Inbound Routes, далее кликаем на кнопку создания нового маршрута (+ Add Inbound Route). Присваиваем имя и указываем DID Number – удобнее всего оба поля заполнить значением вашего номера, и указываем куда будет маршрутизироваться входящий вызов: Кликаем Submit и Apply Config, переходим к настройке исходящего маршрута: во вкладке Connectivity – Outbound Routes, кликаем + Add Outbound Route. Указываем имя маршрута, указываем CID и выбираем транк Далее переходим во вкладку Dial Patterns и в поле Match Pattern ставим одну-единственную точку (для маршрутизации всех вызовов в сторону Билайна). После этого кликаем Submit и Apply Config – на этом настройка транка в FreePBX 13 для оператора Билайн закончена.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59