По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Вот вы пользователь Linux машины. И вот вам захотелось запустить какую-нибудь команду только на определенное время, и вы задаете вопрос - как это сделать? А вот как - использовать команду timeout. Как взять timeout - об использовании команды Базовый синтаксис Как и следовало ожидать, синтакс у команды экстремально прост: сама команда timeout - опции - длительность выполнения (можно даже с единицами измерения) - целевая команда Единицы измерения для указания длительности: s - секунды (­стоит по умолчанию) m - минуты h - часы d - дни Если вы не укажете никакого параметра по длительности, команда не будет активирована. Примеры команд: timeout 5 ping 1.1.1.1 - пингуем 1.1.1.1 5 секунд timeout 5m ping 1.1.1.1 - пингуем 1.1.1 5 минут timeout 5.5h ping 1.1.1.1 - 5,5 часов пингуем 1.1.1 Если у вас есть необходимость, можно запустить команду с добавкой sudo (если для целевой команды требуются права суперпользователя): sudo timeout 100 tcpdump -n -w dump.pcap Сообщение с космосом или отправка определенного сигнала исполняемому процессу Если вы не указали какой-то особый сигнал, по умолчанию передается SIGTERM (сигнал о том, что надо бы мягко терминировать процесс). Однако, если вы укажете ключ -s после команды timeout, вы можете указать любой другой допустимый сигнал. К примеру: sudo timeout -s SIGKILL ping 1.1.1.1 или sudo timeout -s 9 ping 1.1.1.1 Обе команды выше идентичны, и если вы хотите увидеть весь список сигналов, просто введите kill -l Как убить процесс, если он завис Как вы уже поняли, SIGTERM - это сигнал, который отправляется после истечения таймаута, но он легко может быть проигнорирован процессом, и тогда процесс не остановится. Для уверенности в смерти процесса, нужно использовать ключ -k и некое временное значение. Тогда после окончания таймаута будет отправляться сигнал SIGKILL, который процесс не сможет проигнорировать при всем желании. В примере ниже команда выполняется одну минуту, и, если в течение 10 секунд после окончания таймаута она не "умирает", отправляется сигнал SIGKILL и "добивает" процесс: sudo timeout -k 10 1m ping 1.1.1.1 Сохраняем статус Команда timeout всегда возвращает значение 124 после истечения указанного времени или возвращает статус "exit" управляемой команды (той, что вы вводите после команды timeout). Таким образом, вы можете использовать ключ --preserve-status: timeout --preserve-status 10 ping 1.1.1.1 Запуск команды явно, а не за кулисами По умолчанию, timout работает в бэкграунде, и если вы хотите обратного (вдруг после запуска управляемой команды потребуется какой-нибудь пользовательский ввод), нужно использовать ключ -foreground: timeout --foreground 10m ./bestscripteva.sh Заключение В 99% процентов случаев команда timeout требует всего двух аргументов и ни одного факта: времени исполнения и самой исполняемой команды. Однако, вы теперь знаете и другие фишки использования этой замечательной команды.
img
Это первая статья цикла. Продолжение: 2 часть Плоскость данных Начнем с того, что основная задача сети-перенос данных с одного подключенного хоста на другой. Это может показаться простым на первый взгляд, но на самом деле это чревато проблемами. Здесь может быть полезна иллюстрация; рисунок № 1 используется для иллюстрации сложности проблемы. Начиная с верхнего левого угла иллюстрации: Приложение генерирует некоторые данные. Эти данные должны быть отформатированы таким образом, чтобы принимающее приложение могло понять, что было передано, - данные должны быть упорядочены. Механизм, используемый для упорядочения данных, должен быть эффективным во многих отношениях, включая быстрое и простое кодирование, быстрое и простое декодирование, достаточно гибкий, чтобы можно было вносить изменения в кодирование, не нарушая слишком много вещей, и добавлять наименьшее количество накладных расходов, возможных во время передача данных. Сетевое программное обеспечение должно инкапсулировать данные и подготовить их к фактической передаче. Каким-то образом сетевое программное обеспечение должно знать адрес хоста назначения. Сеть, которая соединяет источник и пункт назначения, является общим ресурсом, и, следовательно, должна быть доступна некоторая форма мультиплексирования, чтобы источник мог направлять информацию в правильный пункт назначения. Как правило, это будет связано с определенной формой адресации. Данные должны быть перемещены из памяти в источнике и непосредственно в сеть - фактический провод (или оптический кабель, или беспроводное соединение), который будет передавать информацию между устройствами, подключенными к сети. Сетевые устройства должны иметь какой-то способ обнаружить конечный пункт назначения информации - вторую форму проблемы мультиплексирования - и определить, требуется ли какая-либо другая обработка информации, когда она находится в пути между источником и пунктом назначения. Информация, прошедшая через сетевое устройство, должна быть снова закодирована и перенесена из памяти в провод. В любой точке, где информация перемещается из памяти в какую-либо форму физического носителя, информация должна быть поставлена в очередь; часто бывает больше данных для передачи, чем может быть помещено на любой конкретный физический носитель в любой момент времени. Здесь в игру вступает качество услуг. Информация, передаваемая по сети, теперь должна быть скопирована с физического носителя и обратно в память. Он должен быть проверен на наличие ошибок - это контроль ошибок - и у приемника должен быть какой-то способ сообщить передатчику, что ему не хватает памяти для хранения входящей информации - это контроль потока. Особый интерес представляет сетевое устройство в середине диаграммы. Сетевое устройство-например, маршрутизатор, коммутатор или middle box—соединяет два физических носителя вместе для построения реальной сети. Возможно, самый простой вопрос для начала заключается в следующем: зачем вообще нужны эти устройства? Маршрутизаторы и коммутаторы — это, очевидно, сложные устройства со своей собственной внутренней архитектурой и зачем добавлять эту сложность в сеть? Есть две фундаментальные причины. Первоначальная причина создания этих устройств заключалась в соединении различных видов физических носителей вместе. Например, внутри здания может быть практично работать ARCnet или thicknet Ethernet (приведены примеры из времени, когда были впервые изобретены сетевые устройства). Расстояние, которое эти носители могли преодолеть, однако, очень мало-порядка сотни метров. Каким-то образом эти сети должны быть расширены между зданиями, между кампусами, между городами и, в конечном счете, между континентами, используя своего рода мультиплексированную (или обратную мультиплексированную) телефонную сеть, такую как T1 или DS3. Эти два различных типа носителей используют различные виды сигналов; должно быть какое-то устройство, которое переводит один вид сигналов в другой. Вторая причина заключается в следующем — это масштаб и это стало проблемой. Природа физического мира такова, что у вас есть два варианта, когда дело доходит до передачи данных по проводу: Провод может соединять напрямую два компьютера; в этом случае каждая пара компьютеров должна быть физически соединена с каждым другим компьютером, с которым она должна взаимодействовать. Провод может быть общим для многих компьютеров (провод может быть общим носителем информации). Чтобы решить проблему первым способом, нужно много проводов. Решение проблемы вторым способом кажется очевидным решением, но оно представляет другой набор проблем - в частности, как пропускная способность, доступная по проводам, распределяется между всеми устройствами? В какой-то момент, если на одном общем носителе достаточно устройств, любая схема, используемая для обеспечения совместного использования ресурсов, сама по себе будет потреблять столько же или больше пропускной способности, как любое отдельное устройство, подключенное к проводу. В какой-то момент даже 100-гигабайтное соединение, разделенное между достаточным количеством хостов, оставляет каждому отдельному хосту очень мало доступных ресурсов. Решением этой ситуации является сетевое устройство - маршрутизатор или коммутатор, который разделяет два общих носителя, передавая трафик между ними только по мере необходимости. При некотором логическом планировании устройства, которые должны чаще общаться друг с другом, можно размещать ближе друг к другу (с точки зрения топологии сети), сохраняя пропускную способность в других местах. Конечно, маршрутизация и коммутация вышли далеко за рамки этих скромных начинаний, но это основные проблемы, которые системные администраторы решают, внедряя сетевые устройства в сети. Есть и другие сложные проблемы, которые необходимо решить в этом пространстве, помимо простого переноса информации из источника в пункт назначения; Во многих случаях полезно иметь возможность виртуализировать сеть, что обычно означает создание туннеля между двумя устройствами в сети. Сети всегда создавались для одной цели: передачи информации от одной подключенной системы к другой. Дискуссия (или, возможно, спор) о наилучшем способе выполнения этой, казалось бы, простой задачи длилась долго. Эту дискуссию можно грубо разбить на несколько, часто пересекающихся, этапов, каждый из которых задавал свой вопрос: Должны ли сети быть с коммутацией каналов или с коммутацией пакетов? Должны ли сети с коммутацией пакетов использовать кадры фиксированного или переменного размера? Как лучше всего рассчитать набор кратчайших путей через сеть? Как сети с коммутацией пакетов должны взаимодействовать с качеством обслуживания (QoS)? Должна ли плоскость управления быть централизованной или децентрализованной? На некоторые из этих вопросов давным-давно был дан ответ. С другой стороны, некоторые из этих вопросов все еще актуальны, особенно последний. Коммутация каналов Первое большое обсуждение в мире компьютерных сетей было то, должны ли сети быть с коммутацией каналов или с коммутацией пакетов. Основное различие между этими двумя понятиями заключается в концепции схемы: нужно ли передатчику и приемнику «видеть» сеть как один провод или соединение, предварительно сконфигурированное (или настроенное) с определенным набором свойств прежде чем они начнут общаться? Или они «видят» сеть как общий ресурс, где информация просто генерируется и передается «по желанию»? Первый считается с коммутацией каналов, а второй считается с коммутацией пакетов. Коммутация каналов имеет тенденцию обеспечивать больший поток трафика и гарантии доставки, в то время как коммутация пакетов обеспечивает доставку данных при гораздо меньших затратах - первый из многих компромиссов, с которыми вы столкнетесь при проектировании сетей. Рисунок 2 будет использован для иллюстрации коммутации каналов с использованием мультиплексирования с временным разделением (TDM) в качестве примера. На рисунке 2 общая пропускная способность каналов между любыми двумя устройствами разделена на восемь равных частей; A отправляет данные E, используя временной интервал A1 и F, используя временной интервал A2; B отправляет данные в E с использованием временных интервалов B1 и F с использованием временных интервалов B2. Каждый фрагмент информации имеет фиксированную длину, поэтому каждый из них может быть помещен в один временной интервал в текущем потоке данных (следовательно, каждый блок данных представляет фиксированное количество времени или интервала в проводе). Предположим, что где-то есть контроллер, назначающий слот в каждом из сегментов, через которые будет проходить трафик: Для трафика [A, E]: На C: слот 1 от A переключен на слот 1 в направлении D На D: слот 1 от C переключен на слот 1 в направлении E Для трафика [A, F]: На C: слот 4 от A переключен на слот 4 в направлении D На D: слот 4 от C переключен на слот 3 в направлении F Для трафика [B, E]: На C: слот 4 от B переключен на слот 7 в направлении D На D: слот 7 от C переключен на слот 4 в направлении E Для трафика [B, F]: На C: слот 2 от B переключен на слот 2 в направлении D На D: слот 2 от C переключен на слот 1 в направлении F Ни одно из устройств обработки пакетов в сети не должно знать, какой бит данных идет куда; до тех пор, пока C берет все, что находится в слоте 1 в потоке данных A в каждом временном интервале, и копирует его в слот 1 в своем исходящем потоке в направлении D, А D копирует его из слота 1 входящего из C в слот 1 исходящего в E, трафик, передаваемый A, будет доставляться в E. Есть интересный момент, который следует отметить об этом виде обработки трафика—для пересылки трафика ни одно из устройств в сети на самом деле не должно знать, что является источником или назначением. Блоки данных, передаваемые по сети, не обязательно должны содержать адреса источника или назначения; куда они направляются и откуда поступают, все решения основываются на знании контроллерами открытых слотов в каждом канале. Набор слотов, назначенных для любой конкретной связи между устройствами, называется схемой, потому что это пропускная способность и сетевые ресурсы, выделенные для связи между одной парой устройств. Основные преимущества сетей с коммутацией каналов включают в себя: Для коммутации пакетов устройствам не нужно читать заголовок или выполнять какую-либо сложную обработку. Это было чрезвычайно важно в первые дни работы сети, когда аппаратное обеспечение имело гораздо меньшее количество транзисторов и переключателей, скорость линии была ниже, а время обработки пакета в устройстве составляло большую часть общей задержки пакета через сеть. Контроллер знает доступную полосу пропускания и трафик, направляемый к периферийным устройствам по всей сети. Это делает его несколько простым, учитывая, что на самом деле имеется достаточная пропускная способность, для организации трафика для создания наиболее оптимальных путей через сеть. Есть и недостатки, в том числе: Сложность контроллера значительно возрастает по мере того, как сеть и услуги, которые она предлагает, растут в масштабе. Нагрузка на контроллер может стать подавляющей, фактически вызывая перебои в работе сети. Пропускная способность на каждом канале используется не оптимально. На рис. 1-3 блоки времени (или ячейки), содержащие*, по существу являются потерянной полосой пропускания. Слоты назначаются определенной схеме заранее: слоты, используемые для трафика [A, E], не могут быть «заимствованы» для трафика [A, F], даже если A ничего не передает в сторону E. Время, необходимое для реагирования на изменения в топологии, может быть довольно длительным с точки зрения сети; локальное устройство должно обнаружить изменение, сообщить о нем контроллеру, и контроллер должен перенастроить каждое сетевое устройство вдоль пути каждого затронутого потока трафика. Системы TDM внесли ряд идей в развитие сетей, используемых сегодня. В частности, системы TDM сформировали большую часть ранних дискуссий о разбиении данных на пакеты для передачи по сети и заложили основу для гораздо более поздней работы в области QoS и управления потоком. Одна довольно важная идея, которую эти ранние системы TDM завещали большему сетевому миру, - это network planes. В частности, системы TDM делятся на три плоскости: Плоскость управления - это набор протоколов и процессов, которые формируют информацию, необходимую сетевым устройствам для пересылки трафика через сеть. В сетях с коммутацией каналов плоскость управления является полностью отдельной плоскостью; обычно существует отдельная сеть между контроллером и отдельными устройствами (хотя и не всегда, особенно в новых системах с коммутацией каналов). Плоскость данных (также известная как плоскость пересылки) - это путь информации через сеть. Это включает в себя декодирование сигнала, полученного в проводе, в кадры, обработку их и передачу их обратно в провод, закодированный в соответствии с физической транспортной системой. Плоскость управления ориентирована на управление сетевыми устройствами, включая мониторинг доступной памяти, мониторинг глубины очереди, а также мониторинг, когда устройство отбрасывает информацию, передаваемую по сети, и т. д. Часто бывает трудно различить уровни управления и плоскости управления в сети. Например, если устройство вручную сконфигурировано для пересылки трафика определенным образом, является ли это функцией плоскости управления (потому что устройство настраивается) или функцией плоскости управления (потому что это информация о том, как пересылать информацию)? Коммутация пакетов В начале-середине 1960-х годов коммутация пакетов находилась в состоянии «in the air». Много людей переосмысливали то, как сети были построены, и рассматривали альтернативы парадигме коммутации каналов. Paul Baran, работавший в RAND Corporation, предложил сеть с коммутацией пакетов в качестве решения для обеспечения живучести; примерно в то же время Donald Davies в Великобритании предложил такой же тип системы. Эти идеи попали в Lawrence Livermore Laboratory, что привело к созданию первой сети с коммутацией пакетов (названной Octopus), введенной в эксплуатацию в 1968 году. ARPANET, экспериментальная сеть с коммутацией пакетов, начала функционировать вскоре после этого, в 1970 году. Существенное различие между коммутацией каналов и коммутацией пакетов заключается в роли отдельных сетевых устройств в передаче трафика, как показано на рис.3. На рисунке 3, A создает два блока данных. Каждый из них включает в себя заголовок, описывающий, как минимум, пункт назначения (представлен H в каждом блоке данных). Этот полный пакет информации - исходный блок данных и заголовок - называется пакетом. Заголовок также может описывать, что находится внутри пакета, и может включать любые специальные инструкции по обработке, которые устройства пересылки должны принимать при обработке пакета - их иногда называют метаданными или «данными о данных в пакете». Есть два пакета, произведенных A: A1, предназначенный для E; и A2, предназначенный для F. B также отправляет два пакета: B1, предназначенный для F, и B2, предназначенный для E. Когда C получает эти пакеты, он считывает небольшую часть заголовка пакета, часто называемого полем, чтобы определить место назначения. Затем C обращается к локальной таблице, чтобы определить, по какому исходящему интерфейсу должен быть передан пакет. D делает то же самое, перенаправляя пакет из правильного интерфейса к месту назначения. Этот способ пересылки трафика называется переадресацией по частям, поскольку каждое устройство в сети принимает совершенно независимое решение о том, куда пересылать каждый отдельный пакет. Локальная таблица, к которой обращается каждое устройство, называется таблицей пересылки; обычно это не одна таблица, а множество таблиц, потенциально включающих в себя базу информации маршрутизации (RIB) и базу информации пересылки (FIB). В оригинальных системах с коммутацией каналов плоскость управления полностью отделена от пересылки пакетов по сети. С переходом от коммутации каналов к коммутации пакетов произошел соответствующий переход от решений централизованного контроллера к распределенному протоколу, работающему в самой сети. В последнем случае каждый узел способен принимать свои собственные решения о пересылке локально. Каждое устройство в сети запускает распределенный протокол, чтобы получить информацию, необходимую для построения этих локальных таблиц. Эта модель называется распределенной плоскостью управления; таким образом, идея плоскости управления была просто перенесена из одной модели в другую, хотя на самом деле они не означают одно и то же. Сети с коммутацией пакетов могут использовать централизованную плоскость управления, а сети с коммутацией каналов могут использовать распределенные плоскости управления. В то время, когда сети с коммутацией пакетов были впервые спроектированы и развернуты, однако они обычно использовали распределенные плоскости управления. Software-Defined Networks (SDN) вернули концепцию централизованных плоскостей управления в мир сетей с коммутацией пакетов. Первым преимуществом сети с коммутацией пакетов над сетью с коммутацией каналов является парадигма пересылки hop-by-hop. Поскольку каждое устройство может принимать полностью независимое решение о пересылке, пакеты могут динамически пересылаться в зависимости от изменений в топологии сети, что устраняет необходимость связываться с контроллером и ждать решения. Пока существует как минимум два пути между источником и пунктом назначения (сеть имеет два подключения), пакеты, переданные в сеть источником, в конечном итоге будут переданы в пункт назначения. Вторым преимуществом сети с коммутацией пакетов по сравнению с сетью с коммутацией каналов является то, как сеть с коммутацией пакетов использует пропускную способность. В сети с коммутацией каналов, если конкретная схема (действительно временной интервал в приведенном примере TDM) не используется, то слот просто тратится впустую. При переадресации hop-by-hop каждое устройство может наилучшим образом использовать пропускную способность, доступную на каждом исходящем канале, чтобы нести необходимую нагрузку трафика. Хотя это локально сложнее, это проще глобально, и это позволяет лучше использовать сетевые ресурсы. Основным недостатком сетей с коммутацией пакетов является дополнительная сложность, особенно в процессе пересылки. Каждое устройство должно быть в состоянии прочитать заголовок пакета, найти пункт назначения в таблице, а затем переслать информацию на основе результатов поиска в таблице. В раннем аппаратном обеспечении это были сложные, трудоемкие задачи; коммутация каналов была обычно быстрее, чем коммутация пакетов. Поскольку со временем аппаратное обеспечение усовершенствовалось, то скорость переключения пакета переменной длины, как правило, достаточно близка к скорости переключения пакета фиксированной длины, так что между пакетной коммутацией и коммутацией каналов небольшая разница. Управление потоками в сетях с коммутацией пакетов В сети с коммутацией каналов контроллер выделяет определенную полосу пропускания для каждого канала, назначая временные интервалы от источника до назначения. Что происходит, если передатчик хочет отправить больше трафика, чем выделенные временные интервалы будут поддерживать? Ответ — прост-это невозможно. В некотором смысле, таким образом, возможность управлять потоком пакетов через сеть встроена в сеть с коммутацией каналов; и нет способа отправить больше трафика, чем может передать сеть, потому что «пространство», которое имеет передатчик в своем распоряжении для отправки информации, предварительно выделяется. А как насчет сетей с коммутацией пакетов? Если все звенья сети, показанные на рис. 3, имеют одинаковую скорость соединения, что произойдет, если и А, и В захотят использовать всю пропускную способность соединения в направлении С? Как C решит, как отправить все это в D по каналу связи, который пропускает вдвое меньше трафика, необходимого для обработки? Здесь можно использовать методы управления транспортными потоками. Как правило, они реализованы в виде отдельного набора протоколов / правил, «движущихся поверх» базовой сети, помогая «организовать» передачу пакетов путем создания виртуального канала между двумя взаимодействующими устройствами. Протокол управления передачей (TCP) обеспечивает управление потоком для сетей с коммутацией пакетов на основе Интернет-протокола (IP). Этот протокол был впервые указан в 1973 году Vint Cerf и Bob Kahn. онтроллер выделяет определенную полосу пропускания для каждого канала, назначая временные интервалы от источника до назначения. Что происходит, если передатчик хочет отправить больше трафика, чем выделенные временные интервалы будут поддерживать? Ответ — прост-это невозможно. В некотором смысле, таким образом, возможность управлять потоком пакетов через сеть встроена в сеть с коммутацией каналов; и нет способа отправить больше трафика, чем может передать сеть, потому что «пространство», которое имеет передатчик в своем распоряжении для отправки информации, предварительно выделяется. А как насчет сетей с коммутацией пакетов? Если все звенья сети, показанные на рис. 3, имеют одинаковую скорость соединения, что произойдет, если и А, и В захотят использовать всю пропускную способность соединения в направлении С? Как C решит, как отправить все это в D по каналу связи, который пропускает вдвое меньше трафика, необходимого для обработки? Здесь можно использовать методы управления транспортными потоками. Как правило, они реализованы в виде отдельного набора протоколов / правил, «движущихся поверх» базовой сети, помогая «организовать» передачу пакетов путем создания виртуального канала между двумя взаимодействующими устройствами. Протокол управления передачей (TCP) обеспечивает управление потоком для сетей с коммутацией пакетов на основе Интернет-протокола (IP). Этот протокол был впервые указан в 1973 году Vint Cerf и Bob Kahn.
img
Виртуальные сети - это, в простейшем виде, создание логических топологий, построенных на основе физической топологии. Эти логические топологии часто называют виртуальными топологиями - отсюда и концепция виртуализации сети. Эти топологии могут состоять из одного виртуального канала в более крупной сети, называемого туннелем, или набора виртуальных каналов, которые кажутся полной сетью поверх физической сети, называемой наложением. Этот раздел лекций начнется с обсуждения того, почему создаются и используются виртуальные топологии, проиллюстрированные двумя примерами использования. Во втором разделе этих лекций будут рассмотрены проблемы, которые должно решить любое решение виртуализации, а в третьем разделе будут рассмотрены сложности при виртуализации сети. Далее будут рассмотрены два примера технологий виртуализации: сегментная маршрутизация (segment routing-SR) и программно - определяемые глобальные сети (Software-Defined Wide Area Networks- SD-WAN). Понимание виртуальных сетей Виртуализация усложняет проектирование протоколов, сетей и устранение неполадок, так зачем же виртуализировать? Причины, как правило, сводятся к разделению нескольких потоков трафика в одной физической сети. Это может показаться подозрительно похожим на другую форму мультиплексирования, потому что это еще одна форма мультиплексирования. Основные различия между рассмотренными до сих пор формами мультиплексирования и виртуализацией заключаются в следующем: Позволяет нескольким плоскостям управления работать с различными наборами информации о достижимости в рамках одной физической топологии; Позволяет нескольким наборам достижимых пунктов назначения работать в одной физической топологии без взаимодействия друг с другом; Рассмотренные до этого момента методы мультиплексирования были сосредоточены на том, чтобы позволить нескольким устройствам использовать одну физическую сеть (или набор проводов), позволяя каждому устройству взаимодействовать с любым другим устройством (при условии, что они знают друг о друге с точки зрения достижимости). Виртуализация направлена на разбиение одной физической сети на несколько доменов достижимости, где каждое устройство в домене достижимости может взаимодействовать с любым другим устройством в том же домене достижимости, но устройства не могут связываться между доменами достижимости (если нет какой-либо точки соединения между достижимостью домены). На рисунке 1 показана сеть с виртуальной топологией, расположенной поверх физической топологии. На рисунке 1 виртуальная топология была создана поверх физической сети, с виртуальным каналом [C,H], созданным для передачи трафика по сети. Чтобы создать виртуальную топологию, C и H должны иметь некоторую локальную информацию пересылки, отделяющую физическую топологию от виртуальной топологии, которая обычно проходит либо через E, либо через D. Это обычно принимает форму либо специального набора записей виртуального интерфейса в локальной таблице маршрутизации, либо таблицы виртуальной маршрутизации и пересылки (VRF), содержащей только информацию о виртуальной топологии. Рассмотрение потока пакетов через виртуальную топологию может быть полезно для понимания этих концепций. Как бы выглядел поток пакетов, если бы C и H имели виртуальные интерфейсы? Рисунок 2 демонстрирует это. На рисунке 2 процесс пересылки выполняется следующим образом: A передает пакет к M. C получает этот пакет и, исследуя свою локальную таблицу маршрутизации, находит, что кратчайший путь к месту назначения лежит через виртуальный интерфейс к H. Этот виртуальный интерфейс обычно называется туннельным интерфейсом; он выглядит с точки зрения таблицы маршрутизации, как и любой другой интерфейс маршрутизатора. Виртуальный интерфейс, через который необходимо передать пакет, имеет инструкции перезаписи, которые включают добавление нового заголовка, заголовка туннеля или внешнего заголовка в пакет и пересылку полученного пакета. Исходный заголовок пакета теперь называется внутренним заголовком. C добавляет внешний заголовок и обрабатывает новый пакет для пересылки. Теперь C исследует новый пункт назначения, которым является H (помните, что исходным пунктом назначения был M). H не подключен напрямую, поэтому C необходимо выяснить, как достичь H. Это называется рекурсивным поиском, поскольку C ищет путь к промежуточному месту назначения, чтобы доставить пакет к конечному месту назначения, но не к нему. Теперь C поместит правильную информацию в пакет в заголовок link local, чтобы перенаправить трафик на E. Когда E получает этот пакет, он удаляет внешнюю информацию о переадресации, Заголовок link local и пересылает трафик на основе первого заголовка C, помещенного в пакет, во время первоначального поиска. Этот внешний заголовок говорит E переслать пакет в H; E не видит и не включает исходный внутренний заголовок, помещенный на пакет A. E добавит новый Заголовок link local, чтобы пакет был правильно переадресован в H, и передаст пакет по правильному интерфейсу. Когда H получает пакет, он удаляет Заголовок link local и обнаруживает внешний заголовок. Внешний заголовок говорит, что пакет предназначен для самого H, поэтому он очистит этот заголовок и обнаружит исходный заголовок пакета или внутренний заголовок. Теперь H посмотрит в своей локальной таблице маршрутизации и обнаружит, что M локально подключен. H поместит правильный Заголовок link local в пакет и передаст его через правильный интерфейс, чтобы пакет достиг M. Если C и H используют VRF, а не туннельные интерфейсы, процесс в предыдущем списке изменяется на шагах 2 и 8. На шаге 2 C будет искать M как пункт назначения в VRF, связанном каналом [A, C]. Когда C обнаруживает, что трафик к M должен пересылаться через виртуальную топологию через H, он помещает внешний заголовок в пакет и снова обрабатывает пакет на основе этого внешнего заголовка через базовый VRF или, скорее, таблицу маршрутизации, представляющую физическую топологию. Когда H получает пакет, он удаляет внешний заголовок и снова обрабатывает пакет, используя VRF, к которому подключен M, для поиска информации, необходимой для пересылки трафика в его конечный пункт назначения. В этом случае интерфейс туннеля заменяется отдельной таблицей пересылки; вместо того, чтобы обрабатывать пакет через одну и ту же таблицу дважды с использованием двух разных адресатов, пакет обрабатывается через две разные таблицы пересылки. Термин туннель имеет много различных определений; в этих статьях туннель будет использоваться для описания виртуального канала, где внешний заголовок используется для инкапсуляции внутреннего заголовка, и: Внутренний заголовок находится на том же уровне или более низком уровне, чем внешний заголовок (например, заголовок Ethernet, переносимый внутри заголовка IPv6; обычно IPv6 переносится внутри Ethernet). По крайней мере, некоторые сетевые устройства на пути, будь то виртуальные или физические, пересылают пакет только на основе внешнего заголовка. Переход от виртуальных интерфейсов к VRFs концептуально отличается достаточно, чтобы породить различные описательные термины. Underlay -это физическая (или потенциально логическая!) топология, через которую туннелируется трафик. Overlay - это набор туннелей, составляющих виртуальную топологию. В большинстве случаев термины Underlay и Overlay не используются с отдельными туннелями или в случае службы, работающей через общедоступный Интернет. Сервис, который создает виртуальную топологию через общедоступный Интернет, часто называют сервисом over-the-top. Опять же, эти термины используются в некоторой степени взаимозаменяемо и даже очень небрежно в более широком мире сетевой инженерии. На этом фоне пора перейти к вариантам использования, чтобы узнать о наборе проблем, которые необходимо решить виртуализацией. Предоставление услуг Ethernet по IP-сети. Хотя приложения не должны создаваться с использованием подключения Ethernet в качестве базового, многие из них это делают. Например: Некоторые поставщики систем хранения данных и баз данных строят свои устройства с предположением, что подключение Ethernet означает короткое расстояние и короткую задержку, или они проектируют системы поверх проприетарных транспортных протоколов непосредственно поверх кадров Ethernet, а не поверх пакетов интернет-протокола (IP). Некоторые продукты виртуализации включают в свои продукты предположения о возможности подключения, такие как надежность кеширования Ethernet для IP-адресов для шлюза по умолчанию и других доступных мест назначения. Для таких приложений требуется то, что выглядит как соединение Ethernet между устройствами (физическими или виртуальными), на которых работают различные узлы или копии приложения. Помимо этого, некоторые сетевые операторы считают, что запуск большого плоского домена Ethernet проще, чем запуск крупномасштабного IP-домена, поэтому они предпочли бы создавать самые большие домены Ethernet, которые они могут ("коммутация, где можно, маршрутизация, где необходимо", была распространенная поговорка в те времена, когда коммутация выполнялось аппаратно, а маршрутизация выполнялась программно, поэтому коммутация пакетов выполнялась намного быстрее, чем их маршрутизация). Некоторые кампусы также построены с основной идеей - никогда не просить устройство коммутировать свой IP-адрес после подключения. Поскольку пользователи могут быть подключены к разным сегментам Ethernet в зависимости от их домена безопасности, каждый сегмент Ethernet должен быть доступен в каждой точке беспроводного доступа и часто на каждом порте Ethernet в кампусе. Учитывая сеть, основанную на IP, которая предполагает Ethernet как один из многих транспортных средств, поверх которых будет работать IP, как вы можете обеспечить подключение Ethernet к устройствам, связанным по IP-сети? На рисунке 3 показаны задачи, которые необходимо решить. На рисунке 3 процесс, работающий на A с IP-адресом 2001:db8:3e8:100::1, должен иметь возможность взаимодействовать со службой, работающей на B с IP-адресом 2001:db8:3e8:100::2, как если бы они находились в одном сегменте Ethernet (две службы должны видеть друг друга в обнаружении соседей и т. д.). Чтобы сделать проблему более сложной, служба на A также должна иметь возможность перемещаться в K без изменения своего локального кэша обнаружения соседей или маршрутизатора по умолчанию. Сама сеть, является маршрутизируемой сетью, работающей под управлением IPv6. Что необходимо для выполнения требований? Должен быть способ передачи кадров Ethernet по IP-сети, разделяющей серверы. Обычно это будет своего рода туннельная инкапсуляция, как описано в начале этого раздела. Туннелирование позволило бы принимать кадры Ethernet на C, например, инкапсулированные в какой-то внешний заголовок, чтобы их можно было транспортировать по маршрутизируемой сети. Когда пакет, содержащий кадр Ethernet, достигает D, этот внешний заголовок может быть удален, и кадр Ethernet пересылается локально. С точки зрения D, фрейм имеет локальное происхождение. Должен быть способ узнать о пунктах назначения, доступных через туннель, и привлечь трафик в туннель. На самом деле это две отдельные, но взаимосвязанные проблемы. Привлечение трафика в туннель может включать запуск второй плоскости управления с ее собственными VRFs или добавление дополнительной информации в существующую плоскость управления об адресах Ethernet Media Access Control (MAC), доступных на каждом пограничном маршрутизаторе. Может потребоваться перенести маркировку качества обслуживания (QoS) из внутреннего заголовка во внешний заголовок, чтобы трафик обрабатывался правильно при его пересылке. Виртуальный частный доступ к корпоративной сети. Почти в каждой организации есть какие-то удаленные сотрудники, либо на полную ставку, либо просто люди, которые перемещаются, и у большинства организаций есть какие-то удаленные офисы, где часть сотрудников работает вдали от главного офиса, чтобы напрямую взаимодействовать с местным организациями в некоторых отраслях, например, с покупателями или поставщиками. Все эти люди по-прежнему нуждаются в доступе к сетевым ресурсам, таким как электронная почта, системы путешествий, файлы и т. д. Эти службы, конечно, не могут быть доступны в общедоступном Интернете, поэтому необходимо предоставить какой-то другой механизм доступа. На рисунке 4 показаны типичное проблемное пространство. В этом варианте использования есть две основные проблемы: Как можно защитить трафик между отдельным хостом - B - и тремя хостами в небольшом офисе - C, D и E - от перехвата и чтения злоумышленником? Как можно защитить сами адреса назначения от попадания в публичную сеть? Эти проблемы связаны с некоторой защитой, которая, в свою очередь, подразумевает некоторую форму инкапсуляции пакетов. Как можно управлять качеством работы пользователей в этих удаленных местах для поддержки передачи голоса по IP и других приложений в реальном времени? Поскольку провайдеры в Интернете не поддерживают QoS, необходимо обеспечить другие формы гарантии качества. Таким образом, задача, которую необходимо решить, включает еще две общие проблемы. Должен быть способ инкапсулировать трафик, передаваемый по общедоступной сети, без раскрытия исходной информации заголовка и без подвергания информации, содержащейся в пакете, для проверки. Самым простым решением этих проблем является туннелирование (часто в зашифрованном туннеле) трафика от A и F к граничному маршрутизатору в сети организации G, где инкапсуляция может быть удалена, а пакеты перенаправлены на A. Должен быть способ объявить достижимые пункты назначения от G к удаленным пользователям, а также существование (или достижимость) удаленных пользователей к G и сети позади G. Эта информация о достижимости должна использоваться для привлечения трафика в туннели. В этом случае плоскости управления может потребоваться перенаправить трафик между различными точками входа и выхода в общедоступную сеть и попытаться контролировать путь трафика через сеть, чтобы обеспечить удаленным пользователям хорошее качество работы. Подведем итоги Два варианта использования, показанные выше, актуализируют два вопроса, которые должно решить каждое решение сетевой виртуализации: Как трафик инкапсулируется в туннель, чтобы можно было отделить пакеты и информацию плоскости управления от базовой сети? Решением этой проблемы обычно является некоторая форма инкапсуляции, в которую помещается исходный пакет, когда он передается по сети. Основное внимание при инкапсуляции - поддержка аппаратной коммутации в базовой сети, чтобы обеспечить эффективную пересылку инкапсулированных пакетов. Второстепенным соображением является размер формата инкапсулирующего пакета; каждый октет дополнительного заголовка инкапсуляции уменьшает объем полезной нагрузки, которую туннель может нести (если нет разницы между максимальной единицей передачи или MTU в сети, предназначенной для учета дополнительной информации заголовка, налагаемой туннелированием). Примечание Path MTU Detection (PMTUD) часто плохо определяет MTU инкапсулированных пакетов. Из-за этого часто требуется ручная настройка MTU в точке наложения заголовка туннеля. Как пункты назначения достигаются через туннель, объявленный через сеть? В более общих туннельных решениях туннель становится "просто еще одним звеном" в общей топологии сети. Пункты назначения, доступные через туннель, и дополнительная виртуальная связь просто включены как часть плоскости управления, как и любые другие пункты назначения и каналы. В этих решениях существует одна таблица маршрутизации или пересылки в каждом устройстве, и рекурсивный поиск используется для обработки пакета посредством пересылки в точке, где трафик входит в туннель или головной узел туннеля. Трафик привлекается в туннель путем изменения метрик таким образом, чтобы туннель был более желательным путем через сеть для тех пунктов назначения, которые оператор сети хотел бы получить через туннель. Это обычно означает в основном ручные решения проблемы привлечения трафика в туннель, такие как установка метрики туннеля ниже пути, по которому проходит туннель, а затем фильтрация пунктов назначения, объявленных через туннель, чтобы предотвратить объявления пунктов назначения, которые должны быть недоступны через туннель. На самом деле, если пункты назначения, достижимые через туннель, включают конечную точку туннеля (хвост туннеля), может образоваться постоянная петля маршрутизации, или туннель будет циклически переключаться между правильной переадресацией трафика и не переадресацией трафика вообще. В решениях с overlay и over-the-top развертывается отдельная плоскость управления (или передается отдельная база данных с информацией о доступности для адресатов, достижимых в underlay и overlay в единой плоскости управления). Пункты назначения, доступные через underlay и overlay, помещаются в отдельные таблицы маршрутизации (VRF) на головной станции туннеля, а таблица, используемая для пересылки трафика, основана на некоторой форме системы классификации. Например, все пакеты, полученные на конкретном интерфейсе, могут быть автоматически помещены в оверлейный туннель, или все пакеты с определенным классом обслуживания, установленным в их заголовках пакетов, или весь трафик, предназначенный для определенного набора пунктов назначения. Механизмы полного наложения и верхней виртуализации обычно не полагаются на метрики для привлечения трафика в туннель на головной станции. Еще одно необязательное требование - обеспечить качество обслуживания либо путем копирования информации QoS из внутреннего заголовка во внешний заголовок, либо путем использования какой-либо формы проектирования трафика для передачи трафика по наилучшему доступному пути.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59