По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Поговорим про инструмент Cisco Unified Real-Time Monitoring Tool (RTMT) , который используется для мониторинга системы Cisco Unified Communications Manager (CUCM) в реальном времени. Установка Сначала нужно перейти в меню Cisco Unified CM Administration и выбрать вкладку Application → Plugins. Здесь нажимаем Find и среди результатов поиска находим строчку Cisco Unified CM Real-Time Monitoring Tool (Windows либо Linux в зависимости от системы) и нажимаем Download. Далее запускаем скачанный файл, выбираем место установки, принимаем лицензионное соглашение и устанавливаем RTMT. После этого открываем программу и в появившемся окне указываем IP адрес сервера и логин с паролем администратора. Номер порта указываем 8443, если он не менялся. Слева находится две вкладки. Вкладка System отображает общие данные системы, предупреждения, сообщения syslog и позволяет собирать трейсы. System → System Summary → System Summary - Показывает общую информацию о системе (Использование памяти, CPU, HDD, предупреждения); System → Server → CPU and Memory - Использование памяти и CPU; System → Server → Process - Показывает запущенные процессы и какие ресурсы они используют; System → Server → Disk Usage - Использование дискового пространства; System → Server → Critical Services - Показывает состояние сервисов; System → Performance → Performance - Позволяет выбрать отображаемые счетчики производительности; System → Performance → Performance Log Viewer - Просмотр логов производительности; System → Tools → Alert Central - Системные ошибки и настройка оповещений; System → Tools → Trace & Log Central - Просмотр трейсов и логов; System → Tools → Job Status - Показывает выполняемых работ; System → Tools → SysLog Viewer - Просмотр SysLog сообщений; System → Tools → VLT - Информация о Voice Log Translator; Вкладка Communications Manager показывает информацию о CUCM серверах, информацию о звонках и подключенных устройствах. CallManager → CallManager Summary → CallManager Summary - Общая информация о CUCM; CallManager → Call Process → Call Activity - Информация о звонках; CallManager → Call Process → Gateway Activity - Информация о шлюзах; CallManager → Call Process → Trunk Activity - Информация о транках; CallManager → Call Process → SDL Queue - Информация о Signal Distribution Layer; CallManager → Call Process → SIP Activity - Отображает SIP активность; CallManager → Device → Device Summary - Информация о подключенных устройствах; CallManager → Device → Device Search - Поиск подключенных устройств; CallManager → Device → Phone Summary - Информация о телефонных аппаратах; CallManager → Service → Cisco TFTP - Информация о TFTP сервере; CallManager → Service → Heartbeat - Отображает Heartbeat статус системы; CallManager → Service → Database Summary - Информация о базе данных; CallManager →CTI → CTI Manager - Computer Telelphony Integration информация; CallManager →CTI → CTI Search - Поиск CTI;
img
Изначально разработанный для Unix-систем grep, является одной из наиболее широко используемых утилит командной строки в среде Linux. grep расшифровывается как "глобальный поиск строк, соответствующих регулярному выражению и их вывод" (globally search for a regular expression and print matching lines). grep в основном ищет на основе указанного посредством стандартного ввода или файла шаблона, или регулярного выражения и печатает строки, соответствующие заданным критериям. Часто используется для фильтрации ненужных деталей при печати только необходимой информации из больших файлов журнала. Это возможно благодаря совместной работе регулярных выражений и поддерживаемых grep параметров. Здесь мы рассмотрим некоторые из часто используемых сисадминами или разработчиками команд grep в различных сценариях. Синтаксис grep Команда grep принимает шаблон и необязательные аргументы вместе со перечислять файлов, если используется без трубопровода. $ grep [options] pattern [files] Простой пример: $ grep my file.txt my_file 1. Поиск среди нескольких файлов grep позволяет выполнять поиск заданного шаблона не только в одном, но и среди нескольких файлах. Для этого можно использовать подстановочный символ *. $ sudo grep -i err /var/log/messages Как видно из вывода, утилита перед результатом искомого шаблона выводит также название файла, что позволяет определить где именно было найдено совпадение. 2. Регистронезависимый поиск grep позволяет искать шаблон без учета регистра. Чтобы указать grep игнорировать регистр используется флаг –i. $ grep -i [pattern] [file] 3. Поиск слова Иногда появляется необходимость поиска не части, а целого слова. В таких случаях утилита запускается с флагом -w. $ grep -w [pattern] [file] 4. Вывод количества совпадений Не всегда нужно выводить результат совпадения. Иногда достаточно только количества совпадений с заданным шаблоном. Эту информацию мы можем получить с помощью параметра -c. $ grep -c [pattern] [file] 5. Поиск в поддиректориях Часто необходимо искать файлы не только в текущей директории, но и в подкаталогах. grep позволяет легко сделать это с флагом -r. $ grep -r [pattern] * 6. Инверсивный поиск Если вы хотите найти что-то, что не соответствует заданному шаблону, grep позволяет сделать только это с флагом -v. $ grep -v [pattern] [file] Можно сравнить выходные резултаты grep для одного и того же шаблона и файла с флагом -v и без него. С параметром -v выводятся любые строки, которые не соответствуют образцу. 7. Вывод нумерации строк grep позволяет нумеровать совпавшие строки, что позволяет легко определить, где строка находится в файле. Чтобы получить номера строк в выходных данных. используйте параметр –n: $ grep -n [pattern] [file] 8. Ограничение вывода Результат вывода grep для файлов вроде журналов событий и т.д. может быть длинным, и вам может просто понадобиться фиксированное количество строк. Мы можем использовать -m [num], чтобы ограничить выводимые строки. $ grep -m[num] [pattern] [file] Обратите внимание, как использование флага -m влияет на вывод grep для одного и того же набора условий в примере ниже: 9. Вывод дополнительных строк Часто нам нужны не только строки, которые совпали с шаблоном, но некоторые строки выше или ниже их для понимания контекста. С помощью флагов -A, -B или -C со значением num можно выводить строки выше или ниже (или и то, и другое) совпавшей строки. Здесь число обозначает количество дополнительных печатаемых строк, которое находится чуть выше или ниже соответствующей строки. Это применимо ко всем совпадениям, найденным grep в указанном файле или списке файлов. $ grep -A[num] [pattern] [file] $ grep -B[num] [pattern] [file] $ grep -C[num] [pattern] [file] Ниже показан обычный вывод grep, а также вывод с флагом -A, -B и -C один за другим. Обратите внимание, как grep интерпретирует флаги и их значения, а также изменения в соответствующих выходных данных. С флагом -A1 grep печатает 1 строку, которая следует сразу после соответствующей строки. Аналогично, с флагом -B1 он печатает 1 строку непосредственно перед соответствующей строкой. С флагом -C1 он печатает 1 строку, которая находится до и после соответствующей строки. 10. Вывод списка файлов Чтобы напечатать только имя файлов, в которых найден образец, а не сами совпадающие строки, используйте флаг -l. $ grep -l [pattern] [file] 11. Вывод абсолютных совпадений Иногда нам нужно печатать строки, которые точно соответствуют заданному образцу, а не какой-то его части. Флаг -x grep позволяет делать именно это. $ grep -x [pattern] [file] В приведенном ниже примере файл file.txt содержит строку только с одним словом «support», что соответствует требованию grep с флагом –x. При этом игнорируются строки, которые могут содержать слова «support» с сопутствующим текстом. 12. Поиск совпадения в начале строки С помощью регулярных выражений можно найти последовательность в начале строки. Вот как это сделать. Обратите внимание, как с помощью символ каретки ^ изменяет выходные данные. Символ каретки указывает grep выводить результат, только если искомое слово находится в начале строки. Если в шаблоне есть пробелы, то можно заключить весь образец в кавычки. 13. Поиск совпадения в конце строки Другим распространенным регулярным выражением является поиск шаблона в конце строки. $ grep [options] "[string]$" [file] В данном примере мы искали точку в конце строки. Поскольку точка . является значимым символом, нужно её экранировать, чтобы среда интерпретировала точку как команду. Обратите внимание, как изменяется вывод, когда мы просто ищем совпадения . и когда мы используем $ для указания grep искать только те строки, которые заканчиваются на . (не те, которые могут содержать его где-либо между ними). 14. Использования файла шаблонов Могут возникнуть ситуации, когда у вас есть сложный список шаблонов, которые вы часто используете. Вместо записи его каждый раз можно указать список этих образцов в файле и использовать с флагом -f. Файл должен содержать по одному образцу на каждой строке. $ grep -f [pattern_file] [file_to_match] В нашем примере мы создали файла шаблона с названием pattern.txt со следующим содержимым: Для его использования используйте флаг -f. 15. Поиск по нескольким шаблонам grep позволяет задать несколько шаблонов с помощью флага -e. $ grep -e [pattern1] -e [pattern2] -e [pattern3]...[file] 16. Указание расширенных регулярных выражений grep также поддерживает расширенные регулярные выражения (Extended Regular Expressions – ERE) или с использованием флага -E. Это похоже на команду egrep в Linux. Использование ERE имеет преимущество, когда вы хотите рассматривать метасимволы как есть и не хотите экранировать их. При этом использование -E с grep эквивалентно команде egrep. $ grep -E '[Extended RegEx]' [file] Ниже приведён пример использование ERE, для вывода не пустых и не закомментированных строк. Это особенно полезно для поиска чего-то в больших конфигурационных файлах. Здесь дополнительно использован флаг –v, чтобы НЕ выводить строки, соответствующих шаблону '^ (# | $)'. Заключение Приведенные выше примеры являются лишь верхушкой айсберга. grep поддерживает ряд вариантов и может быть очень полезным инструментом в руке человека, который знает, как его эффективно использовать. Мы можем не только использовать приведенные выше примеры, но и комбинировать их различными способами, чтобы получить то, что нам нужно. Для получения дополнительной информации можно воспользоваться встроенной системой справки Linux – man.
img
А пока не начали - почитайте материал про одноадресные пути без петель. Простое правило кратчайшего пути используется для построения описания набора путей, а не одного пути в реальных сетях. Хотя для представления набора путей через топологию или сеть можно использовать ряд различных видов деревьев, для описания компьютерных сетей обычно используются два: Minimum Spanning Tree - MST и Shortest Path Tree - SPT. Разница между этими двумя видами деревьев часто неуловима. Сеть, показанная на рисунке 3, будет использоваться для иллюстрации MST и SPT. На рисунке 3 несколько различных путей будут касаться каждого узла, например, с точки зрения А: [A, B, E, D, C] и [A, C, D, E, B], каждая общей стоимостью 10 [A, B, E] стоимостью 5 и [A, C, D] стоимостью 3, общая стоимость 8 [A, C, D, E] стоимостью 6 и [A, B] стоимостью 1, общая стоимость - 7 MST - это дерево, которое посещает каждый узел в сети с минимальной общей стоимостью (обычно измеряется как сумма всех линий связи, выбранных в сети). Алгоритм, вычисляющий MST, выберет вариант 3, поскольку он имеет наименьшую общую стоимость по набору граней, необходимых для достижения каждого узла в сети. SPT описывает кратчайший путь к каждому пункту назначения в сети, независимо от общей стоимости графа. Алгоритм, вычисляющий SPT, с точки зрения A выбрал бы: От [A, B] до B со стоимостью 1, так как этот путь короче, чем [A, C, D, E, B] со стоимостью 10 [A, B, E] в E стоимостью 5, так как это короче, чем [A, C, D, E] стоимостью 6 От [A, C] до C со стоимостью 1, так как это короче, чем [A, B, E, D, C] со стоимостью 10 [A, C, D] в D стоимостью 3, так как это короче, чем [A, B, E, D] стоимостью 8 Сравнивая набор кратчайших путей с набором путей, которые будут касаться каждого узла, приведенный выше алгоритм, вычисляющий SPT, выберет вариант 2, а не 3 в вышеуказанном списке. Другими словами, SPT будет игнорировать общую стоимость граней в MST, чтобы найти кратчайший путь к каждому достижимому месту назначения (в данном случае к узлам), тогда как MST будет игнорировать кратчайший путь к каждому достижимому месту назначения, чтобы минимизировать стоимость всего графа. Плоскости управления сетью чаще всего вычисляют SPT, а не MST, используя какую-либо форму greedy алгоритма. Хотя SPT не оптимальны для решения всех проблем, связанных с потоками сетевого трафика, они, как правило, лучше, чем MST, в типах проблем потока трафика, которые должны решать плоскости управления сетью. Greedy алгоритм Greedy алгоритмы выбирают локально оптимальные решения для решения больших проблем. Например, при вычислении кратчайшего пути через сеть Greedy алгоритм может выбрать посещение более близких соседних узлов (может быть достигнуто через линию связи с более низкой стоимостью) перед узлами, которые находятся дальше (могут быть достигнуты через линию связи с более высокой стоимостью). Таким образом, можно сказать, что Greedy алгоритмы ослабляют вычисления, обычно игнорируя или приближая глобальную оптимизацию. Иногда Greedy алгоритмы могут потерпеть неудачу. Когда они действительно дают сбой, они могут потерпеть впечатляющую неудачу, обеспечивая худшее из возможных решений. Например, при правильном наборе метрик жадный алгоритм, такой как алгоритм Дейкстры, может вычислить набор самых длинных путей через сеть, а не набор самых коротких. Поэтому Greedy алгоритмы иногда считаются эвристическими, поскольку они приближают решение сложной задачи или могут решить ее в ограниченных средах, а не фактически решают общую задачу. В реальном мире компьютерные сети спроектированы таким образом, чтобы эти алгоритмы вычисляли наилучшее возможное решение поставленной проблемы в каждом случае, а именно нахождение кратчайшего набора путей через сеть. А дальше интереснее - почитайте про альтернативные пути без петель.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59