По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В нашей базе знаний есть довольно много статей о различных полезных трюках и командах для Linux, которые облегчают жизнь системному администратору – сегодня поговорим ещё о нескольких командах и объясним их синтаксис. История введённых команд Представьте себе долгую и утомительную сессию по настройке вашего сервера, и, вдруг, вы понимаете, что какой-то шаг был выполнен неверно – в таком случае может очень пригодиться команда history - как видно на скриншоте ниже, она выводит все введённые команды. Более того, если вы хотите повторить какую-нибудь уже введённую команду, достаточно ввести !####, где #### - номер команды. Однако номер команды даёт не очень много информации о том, когда эта команда была введена – для изменения этого факта, достаточно ввести команду HISTTIMEFORMAT="%d/%m/%y %T " - теперь вы увидите время, когда команда была исполнена. Итак, более подробное описание синтаксиса: history - непосредственно команда для вывода истории команд (библиотека GNU); HISTIMEFORMAT - переменная, отвечающая за вывод и формат даты; %d - дни; %m - месяцы; %y - годы; %T - описание; Файлы в системе, занимающие больше всего места и файловая информация Драгоценное место на сервере имеет тенденцию заканчиваться, особенно, если это сервер, служащий для записи звонков или IP-АТС - для вывода списка основных файлов «жрущих» место можно воспользоваться командой: du –hsx * | sort -rh | head -6 du - оценка занимаемого пространства; -hsx (-h) вывод в читаемом формате,(-s) суммаризация вывода команды, (-x) использование одного формата файла; sort - сортировка; -rh -(-r) вывод в обратном порядке,(h) вывод в читаемом формате; head - вывод первых N строк, в данном случае – 6; Команда stat filename_ext позволяет вывести информацию о файле – его объем, права, дату правки и так далее. Забавная команда для новичков, позволяющая постепенно постигать Linux Многие знакомы с командой man, которая показывает мануал по незнакомой команде, изучения – а скрипт ниже выводит какой-нибудь случайный мануал. Таким образом можно постоянно обучаться или просто развлекаться :) man $(ls /bin | shuf | head -1) man - страницы Linux Man; ls - команда ls; /bin - местоположение системного файла Binary; shuf - случайная генерация; head - вывод первых N строк, в данном случае – 1;
img
В многоуровневой и/или модульной системе должен быть какой-то способ связать услуги или объекты на одном уровне с услугами и объектами на другом. Рисунок 1 иллюстрирует проблему. На рисунке 1 Как A, D и E могут определить IP-адрес, который они должны использовать для своих интерфейсов? Как D может обнаружить Media Access Control адрес (MAC), физический адрес или адрес протокола нижнего уровня, который он должен использовать для отправки пакетов на E? Как может client1.example, работающий на D, обнаружить IP-адрес, который он должен использовать для доступа к www.service1.example? Как D и E могут узнать, на какой адрес они должны отправлять трафик, если они не на одном и том же канале или в одном и том же сегменте? Каждая из этих проблем представляет собой отдельную часть interlayer discovery. Хотя эти проблемы могут показаться не связанными друг с другом, на самом деле они представляют собой один и тот же набор проблем с узким набором доступных решений на разных уровнях сети или стеках протоколов. В лекции будет рассмотрен ряд возможных решений этих проблем, включая примеры каждого решения. Основная причина, по которой проблемное пространство interlayer discovery кажется большим набором не связанных между собой проблем, а не одной проблемой, состоит в том, что оно распределено по множеству различных уровней; каждый набор уровней в стеке сетевых протоколов должен иметь возможность обнаруживать, какая услуга или объект на «этом» уровне относится к какой услуге или объекту на каком-либо более низком уровне. Другой способ описать этот набор проблем - это возможность сопоставить идентификатор на одном уровне с идентификатором на другом уровне - сопоставление идентификаторов. Поскольку в наиболее широко применяемых стеках протоколов есть по крайней мере три пары протоколов , необходимо развернуть широкий спектр решений для решения одного и того же набора проблем межуровневого обнаружения в разных местах. Два определения будут полезны для понимания диапазона решений и фактически развернутых протоколов и систем в этой области: Идентификатор - это набор цифр или букв (например, строка), которые однозначно идентифицируют объект. Устройство, реальное или виртуальное, которое с точки зрения сети кажется единым местом назначения, будет называться объектом при рассмотрении общих проблем и решений, а также хостами или услугами при рассмотрении конкретных решений. Есть четыре различных способа решить проблемы обнаружения interlayer discovery и адресации: Использование известных и/или настроенных вручную идентификаторов Хранение информации в базе данных сопоставления, к которой службы могут получить доступ для сопоставления различных типов идентификаторов. Объявление сопоставления между двумя идентификаторами в протоколе Вычисление одного вида идентификатора из другого Эти решения относятся не только к обнаружению, но и к присвоению идентификатора. Когда хост подключается к сети или служба запускается, он должен каким-то образом определить, как он должен идентифицировать себя - например, какой адрес Интернет-протокола версии 6 (IPv6) он должен использовать при подключении к локальной сети. Доступные решения этой проблемы - это те же четыре решения. Хорошо известные и/или настраиваемые вручную идентификаторы Выбор решения часто зависит от объема идентификаторов, количества идентификаторов, которые необходимо назначить, и скорости изменения идентификаторов. Если: Идентификаторы широко используются, особенно в реализациях протоколов, и сеть просто не будет работать без согласования межуровневых сопоставлений и ... Количество сопоставлений между идентификаторами относительно невелико, и ... Идентификаторы, как правило, стабильны - в частности, они никогда не изменяются таким образом, чтобы существующие развернутые реализации были изменены, чтобы сеть могла продолжать функционировать, а затем ... Самым простым решением является ведение какой-либо таблицы сопоставления вручную. Например, протокол управления передачей (TCP) поддерживает ряд транспортных протоколов более высокого уровня. Проблема соотнесения отдельных переносимых протоколов с номерами портов является глобальной проблемой межуровневого обнаружения: каждая реализация TCP, развернутая в реальной сети, должна иметь возможность согласовать, какие службы доступны на определенных номерах портов, чтобы сеть могла «работать». Однако диапазон межуровневых сопоставлений очень невелик, несколько тысяч номеров портов необходимо сопоставить службам, и довольно статичен (новые протоколы или службы добавляются не часто). Таким образом, эту конкретную проблему легко решить с помощью таблицы сопоставления, управляемой вручную. Таблица сопоставления для номеров портов TCP поддерживается Internet Assigned Numbers Authority (IANA) по указанию Engineering Task Force (IETF); Часть этой таблицы показана на рисунке 2. На рисунке 2 службе echo назначен порт 7; эта служба используется для обеспечения функциональности ping. База данных и протокол сопоставления Если число записей в таблице становится достаточно большим, число людей, участвующих в обслуживании таблицы, становится достаточно большим или информация достаточно динамична, чтобы ее нужно было изучать во время сопоставления, а не при развертывании программного обеспечения, имеет смысл создавать и распространять базу данных динамически. Такая система должна включать протоколы синхронизации разделов базы данных для представления согласованного представления внешним запросам, а также протоколы, которые хосты и службы могут использовать для запроса базы данных с одним идентификатором, чтобы обнаружить соответствующий идентификатор из другого уровня сети. Базы данных динамического сопоставления могут принимать входные данные с помощью ручной настройки или автоматизированных процессов (таких как процесс обнаружения, который собирает информацию о состоянии сети и сохраняет полученную информацию в динамической базе данных). Они также могут быть распределенными, что означает, что копии или части базы данных хранятся на нескольких различных хостах или серверах, или централизованными, что означает, что база данных хранится на небольшом количестве хостов или серверов. Система доменных имен (DNS) описывается как пример службы сопоставления идентификаторов, основанной на динамической распределенной базе данных. Протокол динамической конфигурации хоста (DHCP) описан в качестве примера аналогичной системы, используемой в основном для назначения адресов. Сопоставления идентификаторов объявления в протоколе Если объем проблемы сопоставления может быть ограничен, но количество пар идентификаторов велико или может быстро меняться, то создание единого протокола, который позволяет объектам запрашивать информацию сопоставления напрямую от устройства, может быть оптимальным решением. Например, на рисунке 1 D может напрямую спросить E, какой у него локальный MAC-адрес (или физический). Интернет протокол IPv4 Address Resolution Protocol (ARP) является хорошим примером такого рода решений, как и протокол IPv6 Neighbor Discovery (ND). Вычисление одного идентификатора из другого В некоторых случаях можно вычислить адрес или идентификатор на одном уровне из адреса или идентификатора на другом уровне. Немногие системы используют этот метод для сопоставления адресов; большинство систем, использующих этот метод, делают это для того, чтобы назначить адрес. Одним из примеров такого типа систем является Stateless Address Autoconfiguration (SLAAC), протокол IPv6, который хосты могут использовать для определения того, какой IPv6-адрес должен быть назначен интерфейсу. Другим примером использования адреса нижнего уровня для вычисления адреса верхнего уровня является формирование адресов конечных систем в наборе протоколов International Organization for Standardization (ISO), таких как Intermediate System to Intermediate System (IS-IS).
img
Краткий гайд о том, как включить автоматический логин в графический интерфейс для IP – АТС Asterisk – в FreePBX. Кстати, этот гайд актуален для FreePBX версии 12 и выше. Процесс Первым делом открываем FreePBX, переходим в раздел Advanced Settings и находим параметр Enable Remote Unlocking. После, подключитесь к консоли сервера Asterisk дайте команду: amportal a genunlockkey Вы получите примерно такой вывод: [root@asterisk home]# amportal a genunlockkey Please wait... If REMOTEUNLOCK is enabled, you will receive a value for KEY. You can use that as a parameter to config.php, thus: http://192.168.0.122/admin/config.php?unlock=abc123def... KEY=z40usb34g79rkhwv5x76dska6gftlhoyvwbs7hg6ml1am81lg8x9ce2mh7xb46di [root@asterisk home]# И еще раз: параметр Enable Remote Unlocking должен быть включен! Иначе в параметре KEY вы не получите ничего. Таким образом, исходя из сгенерированной комбинации, URL для автоматического входа в FreePBX у вас будет следующим: http://192.168.0.122/admin/config.php?unlock=z40usb34g79rkhwv5x76dska6gftlhoyvwbs7hg6ml1am81lg8x9ce2mh7xb46di Важные замечания: У вас только одна попытка для успешного логина. Если вы перепутаете или ошибетесь в ключе, действующий ключ будет удален и процедуру надо будет проделать заново; Если Enable Remote Unlocking выключен, ничего не сработает. Это вы уже поняли :) Ключ не ограничен по времени (бессрочный); В единицу времени в системе может существовать только один ключ.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59