По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
SSH туннели один из самых часто используемых методов связи среди системных и сетевых администраторов. В данном руководстве расскажем о такой функции как переброс порта SSH. Это используется для безопасной передачи данных между двумя и более системами. Что такое переброс порта SSH? Коротко, переброс порта SSH даёт возможность создавать туннель между несколькими системами, а затем настроить эти системы так, чтобы трафик они гнали через этот туннель. Именно по такой логике работает VPN или SOCKS Proxy. Есть несколько разных методов переброса: переброс локального порта, переброс удалённого порта или динамический переброс. Для начала дадим пояснение каждому из них. Локальный переброс порта позволяет получать доступ ко внешним ресурсам из локальной сети и работать в удаленной системе, как если бы они находились в одной локальной сети. По такому принципу работает Remote Access VPN. Переброс удаленного порта дает возможность удалённой системе получать доступ к вашей локальной сети. Динамический переброс создает SOCKS прокси сервер. После этого настраиваем приложения так, чтобы они использовали это туннель для передачи данных. Чаще всего такой переброс используется для доступа к ресурсам, который по той или иной причине заблокированы для данной страны. Для чего нужен переброс порта SSH? Допустим у вас есть какое-то приложение, которые передаёт данные в открытом виде или через нешифрованный протокол. Ввиду того, что SSH создает шифрованное соединение, то вы с легкостью можете настроить программу так, чтобы трафик её шёл через этот туннель. Он так же часто используется для доступа к внутренним ресурсам извне. Приблизительно это напоминает Site-to-Site VPN, где нужно указывать какой именно трафик нужно заворачивать в туннель. Сколько сессий можно устанавливать? Теоретически, можно создавать столько сессий, сколько нам захочется. В сети используется 65 535 различных портов, и мы можем перебрасывать любой из этих портов. Но при перебросе порта нужно учитывать, что некоторые из них зарезервированы за конкретными сервисами. Например, HTTP использует 80 порт. Значит, переброс на порт 80 возможен только если нужно переадресовать веб трафик. Порт, который перебрасывается на локальном хосте может не совпадать с портом удаленной системы. Мы легко можем перебросить локальный порт 8080 на порт 80 на удаленной машине. Иными словами, если мы напишем IP адрес нашей машины и порт 8080, то запрос пойдет на 80 порт удалённой системы. Если вам не критично какой порт использовать на своем хосте, лучше выбрать что-то из диапазона 2000-10000, так как все порты ниже 2000 зарезервированы. Переброс локального порта Локальная пересылка представляет собой переброс порта из клиентской системы на сервер. Он позволяет настроить порт в системе таким образом, чтобы все соединения на этот порт проходили через туннель SSH. Для переадресации локального порта используется ключ L. Общий синтаксис команды таков: $ ssh -L local_port:remote_ip:remote_port user@hostname.com $ ssh -L 8080:www.example1.com:80 example2.com Данной командой мы говорим системе, что все запросы на 8080 порт example1.com переадресовывать на example2.com. Это часто используется когда нужно организовать доступ извне на внутренний ресурсы компании. Тестирование работы переадресованного порта Чтобы проверить, работает ли переадресация должным образом можно воспользоваться утилитой netcat. На машине, где была запущена команда переадресации нужно ввести команду netcat в следующем виде: $ nc -v remote_ip port_number Если переадресация работает и трафик проходит, то утилита вернёт "Успех!". В противном случае выдаст ошибку об истечении времени ожидания. Если что-то не работает, нужно убедиться, что подключение к удаленному порту по SSH работает корректно и запросы не блокируются межсетевым экраном. Создание постоянного туннеля (Autossh) Для создания туннеля, который будет активен постоянно используется так называемая утилита Autossh. Единственно требование это необходимость настройки между двумя системами аутентификацию по публичным ключам, чтобы не получать запросы на ввод пароля при каждом обрыве и восстановлении соединения. По умолчанию, Autossh не установлен. Чтобы установить эту утилиту введем команду ниже. $ sudo apt-get install autossh Синтаксис утилиты autossh почти похож на синтаксис ssh: $ autossh -L 80:example1.com:80 example2.com Переброс удалённого порта Переброс порта с удалённой машины используется в тех случаях, если нужно предоставить доступ на свой хост. Допусти у нас установлен веб сервер и нам нужно, чтобы друзья могли пользоваться им. Для этого нужно ввести команду показанную ниже: $ ssh -R 8080:localhost:80 geek@likegeeks.com А общий синтаксис команды выглядит так: $ ssh -R remote_port:local_ip:local_port user@hostname.com Динамическая переадресация портов Динамическая переадресация портов позволит ssh функционировать как прокси-сервер. Вместо переброса трафика на специфический порт, здесь трафик будет идти через на диапазон портов. Если вы когда-нибудь пользовались прокси сервером для посещения заблокированного сайта или просмотра контента, недоступного в вашем регионе, вероятнее всего вы пользовались SOCKS сервером. Динамическая переадресация также обеспечивает некоторую приватность. Она затрудняет логирование и анализ трафика, так как трафик проходит через промежуточный сервер. Для настройки динамической переадресации используется следующая команда: $ ssh -D local_port user@hostname.com Таким образом, если нужно весь трафик идущий на порт 1234 направить на SSH сервер, нужно ввести команду: $ ssh -D 1234 geek@likegeeks.com После установления соединения, мы можем указать в приложениях, например, браузере, пропускать трафик через туннель. Множественная переадресация Иногда приходится перебрасывать несколько внутренних портов на несколько внешних. Допустим у нас на одном и том же сервере крутятся и веб сервер и oracale. В таком случае мы можем указать несколько условий переадресации ставя перед каждым из них ключ L для локальной переадресации и R для внешней. $ ssh -L local_port_1:remote_ip:remote_port_1 -L local_port_2:remote_ip:remote_port2 user@hostname.com $ ssh -L 8080:192.168.1.1:80 -L 4430:192.168.1.1:1521 user@hostname.com $ ssh -R remote_port1:local_ip:local_port1 remote_port2:local_ip:local_port2 user@hostname.com Просмотр списка туннелей Чтобы просмотреть сколько SSH туннелей активны на данный момент можно прибегнуть к помощи команды lsof: $ lsof -i | egrep '<ssh>' Как видим, на нашей системе сейчас активно три подключения. Чтобы вместо имени хоста показать IP адрес к команде нужно добавить ключ n. $ lsof -i -n | egrep '<ssh>' Ограничение переадресации портов По умолчанию, переброс портов SSH активен для всех. Но если нужно ограничить переадресацию портов в целях безопасности, то нужно отредактировать файл sshd_config. $ sudo vi /etc/ssh/sshd_config Здесь есть несколько опций, позволяющих ограничивать создание SSH туннелей. PermitOpen позволяет прописать адреса, для которых можно включить переадресацию портов. Тут можно указать конкретный IP адреса или название хоста: PermitOpen host:port PermitOpen IPv4_addr:port PermitOpen [IPv6_addr]:port AllowTCPForwarding данная опция включает или отключает переадресацию портов для SSH. Так же можно указать какой тип переадресации допускается на этом хосте. AllowTCPForwarding yes #default setting AllowTCPForwarding no #prevent all SSH port forwarding AllowTCPForwarding local #allow only local SSH port forwarding AllowTCPForwarding remote #allow only remote SSH port forwarding Для подробной информации можно вызвать руководство по файлу sshd_config: $ man sshd_config Уменьшение задержки Проблема с переадресацией портов на SSH это возможность увеличения задержки. При работе с текстовой информацией э то не критично. Проблема даёт о себе знать если по сети идёт много трафика, а SSH сервер настрое как SOCKS сервер, то есть на нём настроена динамический переброс портов. Это происходит по той причине, что SSH туннели по сути это TCP туннель поверх TCP. Это не очень эффективный метод передачи данных. Для решения проблемы можно настроить VPN, но если по какой-то причине предпочитаете SSH туннели, то существует программа sshuttle, которая устраняет проблему. На Ubuntu или других дистрибутивах семейства Debian программу можно установить командой $ sudo apt-get install sshuttle Если же программы нет в репозиториях дистрибутива, то можно взять ее с GitHub: $ git clone https://github.com/sshuttle/sshuttle.git $ cd sshuttle $ ./setup.py install Настройка туннеля в sshuttle отличается от SSH. Чтобы завернуть весь трафик в туннель нужно ввести следующую команду: $ sudo sshuttle -r user@remote_ip -x remote_ip 0/0 vv Прервать соединение можно комбинацией клавиш Ctrl+C. Чтобы запустить sshuttle как демон, нужно добавить ключ D. Чтобы убедиться что туннель поднят и в глобальной сети показывается другой IP, в терминале можно ввести команду: $ curl ipinfo.io Или же просто открыть любой другой сайт, который покажет белый IP и местоположение.
img
Процесс анализа программного кода должен быть максимально автоматизирован. Когда вы создаете запрос на включение изменений, как минимум, вам нужно запустить модульные тесты и статический анализ программного кода в функциональной ветке. Средства автоматизации могут многое рассказать о качестве кода: метрики, покрытие кода модульными тестами, обнаружение дублированных строк и т.д. Однако есть как минимум 50 вещей, которые нельзя проверить автоматически. Они нуждаются во внимательном взгляде опытного проверяющего (это дает нам хоть какую-то надежду на то, что роботы не заменят разработчиков в ближайшем будущем). Требования Программный код реализует все функциональные требования, которые необходимы заказчику? Программный код удовлетворяет всем нефункциональным требованиям, таким как производительность и безопасность? Если нефункциональные требования не были упомянуты заказчиком, то этот вопрос необходимо уточнить у проектировщика или у самого заказчика.  Условия сопровождения Помещены ли все интерфейсы, классы и т.д. на соответствующий прикладной уровень в соответствии с архитектурой  Onion/Clean ? Не изобретаете ли вы колесо, когда пишете программный код? Можно ли его заменить чем-то, что уже существует и что предоставляет какая-либо сторонняя библиотека?  Есть ли уже реализованная логика или какие-то ее фрагменты в кодовой базе? Правильно ли была выбрана область жизненного цикла для интерфейса и реализации в контейнере внедрения зависимостей? Являются ли реализованные функции детерминированными (то есть всегда ли они выдают один и тот же результат для одних и тех же входных данных)? Все ли зависимости явно внедряются через конструктор типов? Есть ли сильная связанность между классами, которая может затруднить повторное использование кода? Используются ли  объекты-значения вместо элементарных типов данных для того, чтобы избежать проблемы одержимости элементарными типами? Соответствуют ли реализованные компоненты, такие как функции, классы, интерфейсы и модули,  принципу единственной обязанностей ? Расширяются ли существующие функциональные возможности при помощи декораторов, технологий аспектно-ориентированного программирования (принципа открытия-закрытия) или они модифицируются на месте? Правильно ли реализованы механизмы синхронизации потоков при доступе к объектам-одиночкам в веб-приложениях? Используются ли по возможности  неизменяемые типы данных вместо изменяемых для того, чтобы избежать побочных эффектов? Добавлена ли функция ведения журнала с верными  уровнями ведения протокола в основные места кода, которые требуют отслеживания? Производительность Правильно ли были выбраны  структуры данных ? Например, используется ли структура Hashtable вместо массива, когда нужно часто искать значения, для того, чтобы избежать линейного поиска? Распараллелены ли длительные операции между всеми доступными ядрами для того, чтобы использовать ресурсы компьютера максимально эффективного? Выполняет ли программный код большое количестве  операций по выделению памяти для объектов в куче, оказывая тем самым дополнительную нагрузку на программу сборки мусора? Кэшируются ли данные, которые были считаны из базы данных, локально или в удаленном кэше? Сколько раз текущий код обращается к базе данных? Возможно стоит получить все данные за одно или несколько обращений? Выполняет ли код все обращения к базе данных, ввод-вывод и другие блокирующие вызовы асинхронно? Использует ли код  пул потоков по максимуму вместо того, чтобы создавать новые потоки? Правильно ли выбран баланс между  нормализацией и  денормализацией при создании дополнительных таблиц базы данных? Правильно ли добавляются или исправляются индексы, если запрос на включение изменений содержит новые SQL-запросы? Возникает ли  проблема с N+1 запросами при извлечении данных из базы данных при помощи фреймворка ORM? Установлен ли правильный уровень изоляции транзакций в хранимых процедурах? Возвращают ли SQL-запросы избыточные данные из базы данных, которые не требуются для кода приложения? Используется ли что-то вроде  SELECT * или что-то подобное? Модульное и интеграционное тестирование Полностью ли модульные тесты покрывают дополнительную логику? При появлении исправлений в логике, появляются ли изменения в соответствующем модульном тесте? Всегда ли все реализованные модульные или другие виды тестов ведут себя детерминировано? Например, приостанавливают ли они выполнение потока на какой-то определенный период времени перед утверждением (что по своей сути является ошибочным шаблоном)?  Все ли модульные тесты реализованы в соответствии с принципами  F.I.R.S.T. ? Есть ли какие-либо признаки проблем в модульном тестировании, такие как проблемы с  логикой проверки условий ,  рулеткой с утверждениями ,  дублированием утверждений и другие? Добавлен ли интеграционный тест, как минимум, для happy-path-сценария (сценария счастливого пути) реализованной функции? Все ли зависимости тестируемого объекта имитируются для того, чтобы модульный тест случайно не превратился в интеграционный и не выполнился быстрее положенного? Изолированы ли модульные и интеграционные тесты друг от друга? Конечные точки API Выбираются ли HTTP-команды, такие как  GET, POST, PUT, DELETE и другие, в соответствии с действием их конечной точки? Отвечает ли каждая конечная точка API за выполнение лишь одной бизнес-операции? Или все же нескольких? Возвращает ли конечная точка API правильный код состояния? Например, не возвращает ли она код 401 вместо 500 при несанкционированном запросе? Сжимаются ли объемные ответы перед их отправкой вызывающей стороне? Защищены ли конечные точки API политиками аутентификации и авторизации? Позволяет ли API, который возвращает большой список объектов, фильтровать его и разбивать на страницы? Является ли конечная точка API GET идемпотентной? Используются ли имена существительные вместо глаголов в именах конечных точек API? Критические изменения Имеются ли в конечной точке API такие критические изменения, как переименование API, удаление или переименование его параметров? Имеются ли критические изменения в полезных данных сообщения (в случае, если используется брокер сообщений), например, удаление или переименование его свойств? Повлияют ли такие изменения в схеме базы данных, как удаление столбцов или таблиц, на другие службы системы? Системная среда Насколько загружен ЦП и сколько оперативной памяти потребляет код при выполнении запроса на включение изменений? Будет ли в средах, в которых будет развернут код (среда тестирования, среда приёмочного пользовательского тестирования, производственная среда), достаточно мощный процессор и достаточный объем оперативной памяти для эффективного выполнения кода? Будет ли реализованная логика, алгоритмы, структуры данных и т.д. работать достаточно быстро на большом наборе данных, который может быть в производственной среде? Документация Была ли изменена документация для того, чтобы отразить новые изменения программного кода (документация API, документация по структуре, проектная документация)? Создается ли тикет  технических недоработок , если запрос на внесение изменений содержит неэффективный или «грязный» код, который сейчас невозможно перестроить из-за недостаточного количества времени? Заключение Количество пунктов, на которых проверяющий должен заострить свое внимание, зависит от конкретного проекта и даже от конкретного запроса на внесение изменений. Ваш с коллегами мозговой штурм (если вы примите во внимание вышеприведенные пункты) может значительно снизить риск того, что вы забудете о чем-то важно при анализе программного кода.   
img
Всем привет! Сегодня статью мы посвятим рассказу о протоколе DHCP (Dynamic Host Configuration Protocol) – что он из себя представляет, для чего он нужен и как он работает. DHCP доступен как для IPv4 (DHCPv4) , так и для IPv6 (DHCPv6) . В этой статье мы рассмотрим версию для IPv4. А следующей статье мы расскажем про его настройку. DHCP за 200 секунд Порассуждаем Каждому устройству, подключенному к сети, нужен уникальный IP-адрес. Сетевые администраторы назначают статические IP-адреса маршрутизаторам, серверам, принтерам и другим сетевым устройствам, местоположение которых (физическое и логическое) вряд ли изменится. Обычно это устройства, предоставляющие услуги пользователям и устройствам в сети, поэтому назначенные им адреса должны оставаться постоянными. Кроме того, статические адреса позволяют администраторам удаленно управлять этими устройствами – до них проще получить доступ к устройству, когда они могут легко определить его IP-адрес. Однако компьютеры и пользователи в организации часто меняют места, физически и логически. Это может быть сложно и долго назначать новые IP-адреса каждый раз, когда сотрудник перемещается. А для мобильных сотрудников, работающих из удаленных мест, вручную настройка правильных параметров сети может быть весьма непростой задачей. Использование DHCP в локальной сети упрощает назначение IP-адресов как на настольных, так и на мобильных устройствах. Использование централизованного DHCP-сервера позволяет администрировать все назначения динамических IP-адресов с одного сервера. Эта практика делает управление IP-адресами более эффективным и обеспечивает согласованность внутри организации, включая филиалы. DHCPv4 динамически назначает адреса IPv4 и другую информацию о конфигурации сети. Отдельный сервер DHCPv4 является масштабируемым и относительно простым в управлении. Однако в небольшом офисе маршрутизатор может быть настроен для предоставления услуг DHCP без необходимости выделенного сервера. DHCPv4 включает три разных механизма распределения адресов для обеспечения гибкости при назначении IP-адресов: Ручное распределение(Manual Allocation) - администратор назначает предварительно установленный IPv4-адрес клиенту, а DHCP сервер передает IPv4-адрес на устройство. Автоматическое распределение(Automatic Allocation) - DHCPv4 автоматически назначает статический IPv4-адрес на устройство, выбирая его из пула доступных адресов. Нет аренды (lease), и адрес постоянно назначается устройству. Динамическое распределение (Dynamic Allocation) - DHCPv4 динамически назначает или дает в аренду IPv4-адрес из пула адресов в течение ограниченного периода времени, выбранного сервером, или пока клиент больше не нуждается в адресе. Динамическое распределение является наиболее часто используемым механизмом DHCP и при его использовании клиенты арендуют информацию с сервера на определенный период. DHCP серверы настраивают так, чтобы установить аренду (лизинг) с различными интервалами. Аренда обычно составляет от 24 часов до недели или более. Когда срок аренды истекает, клиент должен запросить другой адрес, хотя обычно он снова получает старый. Механизм работы DHCP DHCPv4 работает в режиме клиент/сервер. Когда клиент взаимодействует с сервером DHCPv4, сервер назначает или арендует IPv4-адрес этому клиенту. Он подключается к сети с этим арендованным IP-адресом до истечения срока аренды и должен периодически связываться с сервером DHCP, чтобы продлить аренду. Этот механизм аренды гарантирует, что клиенты, которые перемещаются или выходят из строя, не сохраняют за собой адреса, которые им больше не нужны. По истечении срока аренды сервер DHCP возвращает адрес в пул, где он может быть перераспределен по мере необходимости. Рассмотрим процесс получения адреса: Когда клиент загружается (или хочет присоединиться к сети), он начинает четырехэтапный процесс для получения аренды. Он запускает процесс с широковещательным (broadcast) сообщением DHCPDISCOVER со своим собственным MAC-адресом для обнаружения доступных серверов DHCPv4. Поскольку у клиента нет способа узнать подсеть, к которой он принадлежит, у сообщения DHCPDISCOVER адрес назначения IPv4 адреса -255.255.255.255. А поскольку у клиента еще нет настроенного адреса IPv4, то исходный IPv4-адрес - 0.0.0.0. Сообщение DHCPDISCOVER находит серверы DHCPv4 в сети. Поскольку клиент не имеет IPv4 информации при загрузке, он использует широковещательные адреса 2 и 3 уровня для связи с сервером. Когда DHCPv4-сервер получает сообщение DHCPDISCOVER, он резервирует доступный IPv4-адрес для аренды клиенту. Сервер также создает запись ARP, состоящую из MAC-адреса клиента и арендованного IPv4-адреса DHCP сервер отправляет связанное сообщение DHCPOFFER запрашивающему клиенту, как одноадресная передача (unicast), используя MAC-адрес сервера в качестве исходного адреса и MAC-адрес клиента в качестве адреса доставки. Когда клиент получает DHCPOFFER с сервера, он отправляет обратно сообщение DHCPREQUEST. Это сообщение используется как для получения, так и для продления аренды. Когда используется для получения аренды, DHCPREQUEST служит в качестве уведомления о принятии выбранных сервером параметров, которые он предложил, и отклонении предложения от других серверов. Многие корпоративные сети используют несколько DHCP серверов, и сообщение DHCPREQUEST отправляется в виде широковещательной передачи, чтобы информировать все серверы о принятом предложении. При получении сообщения DHCPREQUEST сервер проверяет информацию об аренде с помощью ICMP-запроса на этот адрес, чтобы убедиться, что он уже не используется и создает новую ARP запись для аренды клиента, а затем отвечает одноадресным DHCPACK-сообщением. Это сообщение является дубликатом DHCPOFFER, за исключением изменения поля типа сообщения. Когда клиент получает сообщение DHCPACK, он регистрирует информацию и выполняет поиск ARP для назначенного адреса. Если ответа на ARP нет, клиент знает, что адрес IPv4 действителен и начинает использовать его как свой собственный. Теперь рассмотрим, как происходит продление аренды адреса: Когда срок аренды истек, клиент отправляет сообщение DHCPREQUEST непосредственно DHCP серверу, который первоначально предлагал адрес. Если DHCPACK не получен в течение определенного периода времени, то клиент передает другой DHCPREQUEST, чтобы один из других доступных серверов DHCPv4 мог продлить аренду. При получении сообщения DHCPREQUEST сервер проверяет информацию об аренде, возвращая DHCPACK
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59