По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Из предыдущих статей (тут и тут) мы узнали, что очень немногие механизмы, учитывают изменения в топологии. Большинство этих решений ориентированы на вычисления loop-free пути через очевидно стабильную сеть. Но что происходит при изменении топологии? Как сетевые устройства создают таблицы, необходимые для пересылки пакетов по loop-free путям в сети? В этой серии статей мы рассмотрим очередную подзадачу этой всеобъемлющей проблемы и ответим на вопрос: Как плоскости управления обнаруживают изменения в сети и реагируют на них? На этот вопрос мы ответим, рассмотрев две составляющие процесса конвергенции в плоскости управления. Процесс конвергенции в сети может быть описан в четыре этапа. Рисунок 1 используется для справки при описании этих четырех стадий. Как только связь [C,E] выходит из строя, должны произойти четыре этапа: обнаружение, распространение, вычисление и установка. Обнаружение изменения: будь то включение нового устройства или линии связи, или удаление устройства или линии связи, независимо от причины, изменение должно быть обнаружено любыми подключенными устройствами. На рисунке 1 устройства C и E должны обнаруживать отказ канала [C, E]; когда линия восстанавливается, они также должны обнаружить включение этой (очевидно новой) линии связи в топологию. Распространение информации об изменении: каждое устройство, участвующее в плоскости управления, должно каким-то образом узнавать об изменении топологии. На рисунке 1 устройства A, B и D должны каким-то образом уведомляться о сбое канала [C, E]; когда линия будет восстановлена, они должны быть снова уведомлены о включении этой (очевидно новой) линии связи в топологию. Вычисление нового пути к пункту назначения без петель: на рисунке 1 B и C должны вычислить некоторый альтернативный путь, чтобы достичь пунктов назначения за пределы E (или, возможно, непосредственно самого E). Установка новой информации о пересылке в соответствующие локальные таблицы: На рисунке 1 B и C должны установить вновь вычисленные loop-free пути к пунктам назначения за пределами E в свои локальные таблицы пересылки, чтобы трафик мог коммутироваться по новому пути. Далее мы сосредоточимся на первых двух из четырех шагов, описанных в предыдущем списке, размышляя в начале об обнаружении изменений топологии. Будут рассмотрены некоторые примеры протоколов, специализирующихся на обнаружении изменений топологии. Распределение топологии и информации о достижимости будет рассмотрена в конце этой серии статей. Поскольку эта проблема, по сути, является проблемой распределенной базы данных, она будет решаться с этой точки зрения. Обнаружение изменений топологии Первым шагом в реакции на изменение топологии сети является обнаружение изменения. Вернемся к рисунку 1. Каким образом два устройства, подключенные к каналу, C и E, обнаруживают сбой канала? Решение этой проблемы не так просто, как может показаться на первый взгляд, по двум причинам: информационная перегрузка и ложные срабатывания. Информационная перегрузка возникает, когда плоскость управления получает так много информации, что просто не может распространять информацию об изменениях топологии и/или вычислять и устанавливать альтернативные пути в соответствующие таблицы на каждом устройстве достаточно быстро, чтобы поддерживать согласованное состояние сети. В случае быстрых, постоянно происходящих изменений, таких как отключение связи и подключение каждые несколько миллисекунд, плоскость управления может быть перегружена информацией, в результате чего сама плоскость управления потребляет достаточно сетевых ресурсов, чтобы вызвать сбой сети. Также возможно, что серия отказов вызовет петлю положительной обратной связи, и в этом случае плоскость управления “сворачивается” сама по себе, либо реагируя очень медленно, либо вообще отказывая. Решение проблемы информационной перегрузки состоит в том, чтобы скрыть истинное состояние топологии от плоскости управления до тех пор, пока скорость изменения не окажется в пределах, которые может поддерживать плоскость управления. Ложные срабатывания - это проблема второго типа. Если канал отбрасывает один пакет из каждых 100, и каждый раз отбрасывается единственный пакет, который оказывается пакетом плоскости управления, используемым для отслеживания состояния канала, будет казаться, что канал выходит из строя и довольно часто возобновляет работу - даже если другой трафик перенаправляется по каналу без проблем. Существует два широких класса решений проблемы обнаружения событий: Реализации могут периодически отправлять пакеты для определения состояния канала, устройства или системы. Это опрос (Polling). Реализации могут вызвать реакцию на изменение состояния канала или устройства в некотором физическом или логическом состоянии внутри системы. Это обусловлено событиями. Как всегда, есть разные компромиссы с этими двумя решениями и подкатегории каждого из них. Опрос (Polling) для обнаружения сбоев. Опрос может выполняться удаленно или вне диапазона, или локально, или в группе. Рисунок 2 демонстрирует это. На рисунке 2 A и B периодически отправляют приветствие или какой-либо другой пакет опроса по тому же каналу, через который они подключены, и по тому же каналу, по которому они пересылают трафик. Это внутриполосный опрос, который имеет преимущество отслеживания состояния канала, по которому пересылается трафик, передается информация о доступности и т. д. С другой стороны, D запрашивает у A и B некоторую информацию о состоянии канала [A, B] из другого места в сети. Например, D может периодически проверять состояние двух интерфейсов на канале [A, B] или, возможно, периодически отправлять пакет по пути [C, A, B, C] и т. д. Преимущество заключается в том, что информация о состоянии большого количества каналов может быть централизована, что упрощает управление сетью и устранение неполадок. Оба типа опроса часто используются в реальных сетевых развертываниях. Для работы механизмов опроса часто используются два отдельных таймера: Таймер для определения частоты передачи опроса. Он часто называется интервалом опроса в случае внеполосного опроса и часто называется таймером приветствия в случае внутриполосного опроса. Таймер, чтобы определить, как долго ждать, прежде чем объявить связь или устройство отключенным, или включить сигнал тревоги. Это часто называют мертвым интервалом или мертвым таймером в случае внутриполосного опроса. Цели внутриполосного и внеполосного опроса часто различаются. Внеполосный опрос для обнаружения изменений в состоянии сети часто (но не всегда - особенно в случае централизованной плоскости управления) используется для мониторинга состояния сети и позволяет централизованно реагировать на изменения в состоянии. Внутриполосный опрос наиболее часто используется (как и следовало ожидать) для локального обнаружения изменений состояния, чтобы управлять реакцией распределенных плоскостей управления. Обнаружение сбоев на основе событий Обнаружение сбоев на основе событий основывается на некотором локальном, измеримом событии для определения состояния конкретного канала или устройства. Рисунок 3 демонстрирует это. На рисунке 3, который показывает одну из возможных реализаций элементов архитектуры между физическим интерфейсом и протоколом маршрутизации, есть четыре шага: Связь между двумя микросхемами физического интерфейса (phy), расположенными на обоих концах связи, не работает. Микросхемы физического интерфейса обычно являются оптическими для электрических передач обслуживания. Большинство микросхем физического интерфейса также выполняют некоторый уровень декодирования входящей информации, преобразуя отдельные биты в сети в пакеты (десериализация) и пакеты в биты (сериализация). Информация кодируется физическим интерфейсом на носителе, который предоставляется двумя физическими микросхемами, подключенными к физическому носителю. Если канал не работает или один из двух интерфейсов отключен по какой-либо причине, микросхема физического интерфейса на другом конце канала увидит падение несущей почти в реальном времени - обычно в зависимости от скорости света и длины физического носителя. Это состояние называется потерей носителя. Микросхема физического интерфейса при обнаружении потери несущей отправляет уведомление в таблицу маршрутизации (RIB) на локальном устройстве. Это уведомление обычно запускается как прерывание, которое затем транслируется в некоторую форму вызова интерфейса прикладного программирования (API) в код RIB, что приводит к тому, что маршруты, доступные через интерфейс, и любая информация о следующем переходе через интерфейс помечаются как устаревшие или удаляются из таблицы маршрутизации. Этот сигнал может или не может проходить через базу пересылаемой информации (FIB) по пути, в зависимости от реализации. RIB будет уведомлять протокол маршрутизации о маршрутах, которые он только что удалил из локальной таблицы, на основе события отключения интерфейса. Протокол маршрутизации затем может удалить любых соседей, доступных через указанные интерфейсы (или, скорее, через подключенные маршруты). На рисунке 3 нет места, в котором бы присутствовал периодический процесс, проверяющий состояние чего-либо, а также не было бы пакетов, перемещающихся по сети. Весь процесс основан на том, что микросхема физического интерфейса теряет носитель на подключенной среде, следовательно, этот процесс управляется событиями. Часто бывает, что состояние, управляемое событиями, и статус опроса совмещаются. Например, на рисунке 3, если бы станция управления периодически опрашивала статус интерфейса в локальном RIB, процесс от набора микросхем физического интерфейса к RIB был бы управляемым событием, а процесс от RIB на станцию управления будет направлен опросом. Сравнение обнаружения на основе событий и на основе опроса Таблица 1 отображает преимущества и недостатки каждого механизма обнаружения событий. Внеполосный опросВнутриполосный опросУправляемый событиямиРаспределение статусовСтатус управляется централизованной системой; централизованная система имеет более полное представление об общем состоянии сетиСтатус определяется локальными устройствами; для получения более широкой картины состояния всей сети требуется сбор информации с каждого отдельного сетевого устройстваСтатус определяется локальными устройствами; для получения более широкой картины состояния всей сети требуется сбор информации с каждого отдельного сетевого устройстваСвязь состояния пересылки со связью или состоянием устройстваСообщение о состоянии связи и / или устройства может быть ложным; не проверяет возможность пересылки напрямуюСостояние канала и/или устройства может быть напрямую связано с возможностью пересылки (исключение сбоев в механизме проверки состояния)Состояние канала и/или устройства может быть напрямую связано с возможностью пересылки (исключение сбоев в механизме проверки состояния)Скорость обнаруженияПеред объявлением канала или устройства должен пройти некоторый интервал ожиданияне удалось предотвратить ложные срабатывания; замедляет сообщение об изменениях в сетиПеред объявлением канала или устройства должен пройти некоторый интервал ожиданияне удалось предотвратить ложные срабатывания; замедляет сообщение об изменениях в сетиНекоторый таймер перед сообщением о сбоях может быть желательным, чтобы уменьшить сообщение о ложных срабатываниях, но этот таймер может быть очень коротким и подкрепляться двойной проверкой состояния самой системы; как правило, гораздо быстрее при сообщении об изменениях сетиМасштабированиеДолжен передавать периодические опросы, потребляя пропускную способность, память и циклы обработки; масштабируется в этих пределахДолжен передавать периодические опросы, потребляя пропускную способность, память и циклы обработки; масштабируется в этих пределахНебольшие объемы текущего локального состояния; имеет тенденцию масштабироваться лучше, чем механизмы опроса Хотя может показаться, что обнаружение, управляемое событиями, всегда должно быть предпочтительным, есть некоторые конкретные ситуации, когда опрос может решить проблемы, которые не могут быть решены механизмами, управляемыми событиями. Например, одно из главных преимуществ систем, основанных на опросе, особенно при внутриполосном развертывании, заключается в том, чтобы «видеть» состояние невидимых блоков. Например, на рисунке 4 два маршрутизатора соединены через третье устройство, обозначенное на рисунке как ретранслятор. На рисунке 4 устройство B представляет собой простой физический повторитель. Все, что он получает по каналу [A, B], он повторно передает, как и получил, по каналу [B, C]. На этом устройстве нет какой-либо плоскости управления (по крайней мере, о том, что известно A и C). Ни A, ни C не могут обнаружить это устройство, поскольку оно не изменяет сигнал каким-либо образом, который мог бы измерить A или C. Что произойдет, если канал [A, B] выйдет из строя, если A и B используют управляемый событиями механизм для определения состояния канала? A потеряет несущую, конечно, потому что физический интерфейс в B больше не будет доступен. Однако C будет продолжать принимать несущую и, следовательно, вообще не обнаружит сбой соединения. Если A и C могут каким-то образом общаться с B, эту ситуацию можно разрешить. Например, если B отслеживает все запросы протокола разрешения адресов (ARP), которые он получает, он может, когда канал [A, B] разрывается, каким-то образом отправить «обратный ARP», уведомляющий B о том, что A больше недоступен. Другое решение, доступное в этой ситуации, - это своего рода опрос между A и C, который проверяет доступность по всему каналу, включая состояние B (даже если A и C не знают, что B существует). С точки зрения сложности, управляемое событиями обнаружение увеличивает поверхности взаимодействия между системами в сети, в то время как опрос имеет тенденцию сохранять состояние внутри системы. На рисунке 3 должен быть какой-то интерфейс между чипсетом физического интерфейса, RIB и реализацией протокола маршрутизации. Каждый из этих интерфейсов представляет собой место, где информация, которая может быть лучше скрыта через абстракцию, передается между системами, и интерфейс, который должен поддерживаться и управляться. Опрос, с другой стороны, часто может проводиться в рамках одной системы, полностью игнорируя существующие механизмы и технологии. Пример: обнаружение двунаправленной переадресации В этом подразделе будет изучен пример протокола, разработанного специально для определения состояния канала в сети. Ни один из этих протоколов не является частью более крупной системы (например, протокола маршрутизации), а скорее взаимодействует с другими протоколами через программные интерфейсы и индикаторы состояния. Обнаружение двунаправленной переадресации (Bidirectional Forwarding Detection - BFD) основано на одном наблюдении: на типичном сетевом устройстве работает множество плоскостей управления, каждая со своим собственным механизмом обнаружения сбоев. Было бы более эффективно использовать один общий механизм обнаружения для всех различных плоскостей управления. В большинстве приложений BFD не заменяет существующие протоколы приветствия, используемые в каждой плоскости управления, а скорее дополняет их. Рисунок 5 демонстрирует это. В модели BFD, скорее всего, будет по крайней мере два различных процесса опроса, работающих по одному и тому же логическому каналу (их может быть больше, если есть логические каналы, наложенные поверх других логических каналов, поскольку BFD также может использоваться в различных технологиях сетевой виртуализации). Опрос плоскости управления будет использовать приветствия (hellos) для обнаружения соседних устройств, выполняющих один и тот же процесс плоскости управления, для обмена возможностями, определения максимального блока передачи (MTU) и, наконец, для того, чтобы убедиться, что процесс плоскости управления на соседнем устройстве все еще работает. Эти приветствия проходят через соединение плоскости управления на рисунке 5, которое можно рассматривать как своего рода «виртуальный канал», проходящий через физический канал. Опрос BFD будет выполняться под соединением уровня управления, как показано на рисунке, проверяя работу физического соединения и плоскостей пересылки (переадресации) на двух подключенных устройствах. Этот двухуровневый подход позволяет BFD работать намного быстрее, даже в качестве механизма опроса, чем любой механизм обнаружения на основе протокола маршрутизации. BFD может работать в четырех различных режимах: Асинхронный режим: в этом режиме BFD действует как облегченный протокол приветствия. Процесс BFD в A, потенциально работающий в распределенном процессе (или даже в специализированной интегральной схеме [ASIC]), отправляет пакеты приветствия в C. Процесс BFD в C подтверждает эти пакеты приветствия. Это довольно традиционное использование опроса через hellos. Асинхронный режим с эхом: в этом режиме процесс BFD в A будет отправлять пакеты приветствия в C, поэтому пакеты приветствия будут обрабатываться только через путь пересылки, что позволяет опрашивать только путь пересылки. Для этого A отправляет пакеты приветствия в C, сформированные таким образом, что они будут переадресованы обратно в A. Например, A может отправить пакет C с собственным адресом A в качестве пункта назначения. C может забрать этот пакет и переслать его обратно к A. В этом режиме приветствия, передаваемые A, полностью отличаются от приветствий, передаваемых C. Подтверждения нет, только две системы посылают независимые приветствия, которые проверяют связь в двух направлениях с каждого конца. Режим запроса: В этом режиме два одноранговых узла BFD соглашаются отправлять приветствия только тогда, когда подключение должно быть проверено, а не периодически. Это полезно в том случае, когда существует какой-то другой способ определения состояния канала—например, если канал [A, C] является каналом Ethernet, что означает, что обнаружение несущей доступен для обнаружения сбоя канала, - но этот альтернативный метод не обязательно является надежным для обеспечения точного состояния соединения во всех ситуациях. Например, в случае «коммутатора посередине», где B отключен от A, но не C, C может послать BFD привет, отметив любую проблему с подключением, чтобы убедиться, что его соединение с A все еще есть. В режиме запроса некоторые события, такие как потерянный пакет, могут вызвать локальный процесс для запуска события обнаружения BFD. Режим запроса с эхом: этот режим похож на режим запроса - обычные приветствия не передаются между двумя устройствами, на которых работает BFD. Когда пакет передается, он отправляется таким образом, чтобы другое устройство переадресовало пакет приветствия обратно отправителю. Это снижает нагрузку на процессор на обоих устройствах, позволяя использовать гораздо более быстрые таймеры для приветствий BFD. Независимо от режима работы, BFD вычисляет различные таймеры опроса (hello) и обнаружения (dead) отдельно по каналу связи. Лучший способ объяснить этот процесс-на примере. Предположим, что A отправляет управляющий пакет BFD с предлагаемым интервалом опроса 500 мс, а C отправляет управляющий пакет BFD с предлагаемым интервалом опроса 700 мс. Для связи выбирается большее число или, скорее, более медленный интервал опроса. Объясняется это тем, что более медленная система должна быть в состоянии идти в ногу с интервалом опроса, чтобы предотвратить ложные срабатывания. Частота опроса изменяется при фактическом использовании, чтобы предотвратить синхронизацию пакетов приветствия в нескольких системах на одном и том же проводе. Если было четыре или пять систем, развертывающих Border Gateway Protocol (BGP) на одном канале множественного доступа, и каждая система устанавливает свой таймер для отправки следующего пакета приветствия на основе получения последнего пакета, все пять систем могут синхронизировать их передачу приветствия, чтобы все приветствия по сети передавались в один и тот же момент. Поскольку BFD обычно работает с таймерами длиной менее одной секунды, это может привести к тому, что устройство будет получать приветствия от нескольких устройств одновременно и не сможет обрабатывать их достаточно быстро, чтобы предотвратить ложное срабатывание. Конкретная используемая модификация заключается в джиттере пакетов. Каждый передатчик должен взять базовый таймер опроса и вычесть некоторое случайное количество времени, которое составляет от 0% до 25% от таймера опроса. Например, если таймер опроса составляет 700 мсек, как в приведенном примере, A и C будут передавать каждый пакет приветствия примерно между 562 и 750 мсек после передачи последнего приветствия. Последний момент, который следует учитывать, - это количество времени, в течение которого A и C будут ждать перед объявлением соединения (или соседа) отключенным. В BFD каждое устройство может вычислить свой собственный таймер отключения, обычно выраженный как кратное таймеру опроса. Например, A может решить считать канал (или C) отключенным после пропуска двух приветствий BFD, в то время как C может решить дождаться пропуска трех приветствий BFD.
img
В сегодняшней статье, расскажем как установить последнюю версию операционной системы CentOS 7, в среде виртуализации Hyper-V, по средствам опции сетевой установки или Network Installation. Примечание: В процессе сетевой установки, все файлы и пэкэджи, которые необходимы для операционной системы, будут скачиваться непосредственно из Интернета с зеркала, которое Вы укажете. Поэтому прежде чем воспользоваться данным методом, рекомендуем убедиться, что у Вас хорошее Интернет соединение. Пошаговое видео Подготовка Первое, что необходимо сделать, это скачать специальный загрузочный образ CentOS 7. В зависимости от архитектуры Вашей ОС, он доступен по ссылкам ниже. Например, образ для 64-разрядной системы можно скачать по это ссылке Выбираете любое понравившееся зеркало и открывайте список доступных файлов. Нам необходим образ CentOS 7 Netinstall ISO. Образ для сетевой установки, Netinstall, имеет размер всего лишь приблизительно 386 Мегабайт, тогда как полный образ CentOS 7 весит порядка 4 Гигабайт. Это связано с тем, что в образе Netinstall находятся только метаданные, позволяющие выбрать, с каким именно функционалом будет установлена операционная система. Установка Итак, давайте приступим к установке. Запускаем Hyper-V Manager и первое, что необходимо сделать это создать виртуальный свич. Для этого нажимаем Virtual Switch Manager → New virtual network switch → External и нажать Create Virtual Switch. И выбираем сетевую карту, которую нужно использовать для подключения виртуальных машин к сети и кликаем OK. Теперь приступим непосредственно к созданию виртуальной машины. Для этого нажимаем New → Virtual machine, задаём машине имя и кликаем Next. Поколение (Generation) виртуальной машины оставляем первое - Generation 1 Далее нужно выделить объём оперативной памяти, которая будет использоваться данной виртуальной машиной. По умолчанию - это 1 гигабайт (1024 MB) и для наших целей этого вполне достаточно. Далее необходимо выбрать виртуальный свич (Virtual Switch), который будет использоваться для подключения к сети нашей виртуальной машины. В нашем случае – это VSWITCH_1. Далее создаём виртуальный жёсткий диск для установки на него операционной системы CentOS 7. Выберем размер 15 Гигабайт и укажем путь на нашем локальном компьютере, где будет храниться образ данного виртуального жесткого диска. Рекомендуем выбирать место на диске D:// Далее необходимо указать способ загрузки образа нашей виртуальной машиной. Выбираем Install an operating system from bootable CD/DVD ROM → Image file и указываем путь к нашему недавно скачанному образу CentOS7 Netinstall. Итак, виртуальная машина создана. Подключаемся к ней и выбираем Install CentOS Linux 7 Через некоторое время, перед нами открывается помощник установки. Опции установщика разделяются на три части: Localization, Software и System. В части Localization, настраивается системное время, раскладки клавиатуры и поддерживаемые языки. В части Software, мы указываем источник, откуда будут загружаться файлы для нашей операционной системы и необходимый функционал. И в части System настраиваем куда будет устанавливаться наша операционная система, политики безопасности и сетевые опции. Поскольку в процессе сетевой установки все файлы для CentOS 7 будут скачиваться из Интернета, необходимо подключить наш виртуальный сервер с операционной системой к сети. Для этого выбираем Network and Hostname и “включаем” сеть, передвинув ползунок в положение ON. Тем самым мы задействовали наш виртуальный свич. Теперь можно указывать путь к репозиторию, откуда мы хотим загружать файлы. Выбираем Installation Source и в появившемся окне указываем путь. Я укажу репозиторий CentOS - http://mirror.centos.org/centos/7/os/x86_64/ После этого, начнётся скачивание метаданных и спустя какое то время, источник будет выбран и мы увидим адрес репозитория, который указали. В разделе Software Selection можно выбрать функционал, для целей которого будет использоваться сервер. Теперь всё готово к установке, нажимаем Begin Installation. Пока идёт установка, можно настроить пароль для root пользователя системы. Процесс установки может занимать от 15 до 30 минут, это напрямую зависит от характеристик Вашего компьютера. Как только установка будет закончена, нам предложат перезапуститься. Нажимаем кнопку Reboot. После перезагрузки, наш сервер на базе операционной системы CentOS 7 будет готов к использованию. Для доступа на сервер, необходимо ввести реквизиты доступа, которые мы вводили при создании root пользователя.
img
Для того, чтобы стать полноценным администратором Asterisk, вам необходимо уметь администрировать операционную систему IP – АТС. О том, как заботиться о своем Asterisk установленном на CentOS расскажем дальше. Сменить SSH порт Подключение и управление операционной системой CentOS осуществляется по протоколу SSH (Secure Shell), который позволяет безопасно производить операции на ОС удаленно. По умолчанию, протокол SSH работает на 22 порту. Чтобы подключиться к серверу IP – АТС, откройте программу SSH – клиент Putty, и в поле, указанном красным, введите IP – адрес или доменное имя вашего Asterisk Мы рекомендуем сохранить подключение в программе. Для этого, в поле, выделенном оранжевым, укажите имя для подключения и нажмите Save В целях повышения безопасности, вы можете его изменить следующим образом: Входим в режим редактирования демона SSH [root@localhost ~]# nano /etc/ssh/sshd_config Ищем строчку, которая содержит запись #Port 22. Обычно она находится под текстовым баннером: # The strategy used for options in the default sshd_config shipped with # OpenSSH is to specify options with their default value where # possible, but leave them commented. Uncommented options change a # default value. #Port 22 #AddressFamily any #ListenAddress 0.0.0.0 #ListenAddress :: Уберите символ # (решетку) в начале строчки и укажите номер порта, который вам необходим. Например, 7022 Port 7022 #AddressFamily any #ListenAddress 0.0.0.0 #ListenAddress :: Сохраните изменения. После успешного сохранения, выполните рестарт демона SSH: [root@localhost ~]# /etc/init.d/sshd restart Управление дисковым пространством Если на вашем Asterisk включен функционал записи телефонных разговоров, то вам необходимо отслеживать свободное дисковое пространство. Мы рекомендуем прибегать в этом вопросе к автоматизации – написанию скриптов, которые будут удалять записи, старше определенного срока автоматически. Итак, перейдем к просмотру свободного дискового пространства. Команда du выводит размер файлов и папок в директории, в которой вы находитесь на текущий момент: [root@localhost ~]# du 1240 ./.mozilla/firefox/5r4h2uwt.default/gmp-gmpopenh264/1.5.3 1244 ./.mozilla/firefox/5r4h2uwt.default/gmp-gmpopenh264 4 ./.mozilla/firefox/5r4h2uwt.default/healthreport Более удобным для человеческого восприятия является команда с флагом -h du -h, которая указывает размер файлов и папок в текущей директории с указанием приставки (K – килобайт, М – мегабайт и так далее.) [root@localhost ~]# du -h 1.3M ./.mozilla/firefox/5r4h2uwt.default/gmp-gmpopenh264/1.5.3 1.3M ./.mozilla/firefox/5r4h2uwt.default/gmp-gmpopenh264 4.0K ./.mozilla/firefox/5r4h2uwt.default/healthreport Наиболее «тяжелой» с точки зрения занимаемого пространства директорией в файловой структуре Asterisk является папка /var/spool/asterisk/, в которой находятся файлы голосовой почты, системы записи, факсы и так далее. Если мы хотим узнать размер папки, в которой мы храним файлы системы записи, то добавляем к конструкции du -h флаг s: [root@localhost asterisk]# du -sh /var/spool/asterisk/monitor/ 111M /var/spool/asterisk/monitor/ Отлично, с этим разобрались. Теперь нам надо научиться понимать размер наших дисков. Это гораздо проще – укажите команду df - h и система выведет все диски, с указанием свободного пространства, общего объема и процентной загрузки: [root@localhost asterisk]# df -h Filesystem Size Used Avail Use% Mounted on /dev/sda2 146G 4.8G 134G 4% / tmpfs 498M 72K 498M 1% /dev/shm /dev/sda1 283M 25M 244M 10% /boot Нужные команды файловой системы Перечислим важные команды, которые пригодятся Вам в процессе администрирования вашего Asterisk: ls - вывод списка файлов и папок в текущей директории ls -l – более подробная модификация указанной выше команды. Помимо прочего, команда выводит в консоль права на файл и его владельца. cd /var/spool/asterisk/monitor/ - сделать папку с записями телефонных разговоров текущей директорией. cd .. - вернуться на одну папку назад по файловой иерархии cd ../.. - вернуться на две директории обратно cp index.php /var - скопировать файл index.php в директорию /var cp index.php /var - переместить файл index.php в директорию /var Время и настройка NTP Для синхронизации серверного времени по протоколу NTP, выполните следующие команды: service ntpd stop ntpdate pool.ntp.org service ntpd start service httpd restart Устанавливаем временную зоны сервера: Подключитесь пользователем root к серверу и выполните команду date. Система укажет Вам текущую дату, время и временную зону. [root@localhost ~]# date echo date("D M j G:i:s T Y"); Измените текущую директорию с помощью команды cd /usr/share/zoneinfo. Далее выберите наиболее подходящий регион. Например, если вы из Самары, то перейдите в папку /Europe/Samara Далее нужно создать линк настройки /etc/localtime. В случае с Самарой, команда будет такой: ln -sf /usr/share/zoneinfo/Europe/Samara /etc/localtime Установим переменную ZONE в файле /etc/sysconfig/clock на Europe/Samara. Выполните следующие команды: [root@localhost ~]# vim /etc/sysconfig/clock В открывшемся файле для редактирования через vim нажмите клавишу «o» на клавиатуре. Стрелками сотрите содержимое файла и вставьте нужную временную зону, в нашем примере будет так : ZONE=Europe/Samara. Сохраните изменения нажав :x! и затем клавишу Enter. Установите аппаратное время сервера командой /sbin/hwclock --systohc Просмотр крупных файлов tail /home/log.txt - вывод последних 10 строчек указанного файла. В данном случае файл /home/log.txt tail -f /home/log.txt - вывод последних 10 строчек указанного файла. Если в файл будет динамически добавлены новые строки, это отразится в выводе команды в реальном времени tail –n 100 /home/log.txt - вывод последних 100 строчек указанного файла. tail –n 100 /home/log.txt > result.txt - данная команда запишет 100 последних строчек файла /home/log.txt в файл result.txt
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59