По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Привет! Сегодня мы хотим рассказать про то, как настроить DHCP-сервер и клиент в Linux CentOS и Linux Ubuntu. Поехали! Установка DHCP-сервера в CentOS и Ubuntu Пакет DHCP-сервера доступен в официальных репозиториях основных дистрибутивов Linux, его установка довольно проста, просто выполните следующую команду: # yum install dhcp #CentOS $ sudo apt install isc-dhcp-server #Ubuntu После завершения установки настройте интерфейс, на котором вы хотите, чтобы демон DHCP обслуживал запросы, в файле конфигурации /etc/default/isc-dhcp-server или /etc/sysconfig/dhcpd. # vim /etc/sysconfig/dhcpd #CentOS $ sudo vim /etc/default/isc-dhcp-server #Ubuntu Например, если вы хотите, чтобы демон DHCPD прослушивал eth0, установите его с помощью следующей настройки. DHCPDARGS=”eth0” Сохраните файл и выйдите. Настройка DHCP-сервера в CentOS и Ubuntu Основной файл конфигурации DHCP находится по адресу /etc/dhcp/dhcpd.conf, который должен содержать настройки того, что делать, где делать и все сетевые параметры, предоставляемые клиентам. Этот файл в основном состоит из списка операторов, сгруппированных в две широкие категории: Глобальные параметры: укажите, выполнять ли задачу, как выполнять задачу или какие параметры конфигурации сети предоставить DHCP-клиенту. Объявления: определить топологию сети, указать состояние клиентов, предложить адреса для клиентов или применить группу параметров к группе объявлений. Теперь откройте и отредактируйте файл конфигурации для настройки вашего DHCP-сервера. ------------ CentOS ------------ # cp /usr/share/doc/dhcp-4.2.5/dhcpd.conf.example /etc/dhcp/dhcpd.conf # vi /etc/dhcp/dhcpd.conf ------------ Ubuntu ------------ $ sudo vim /etc/dhcp/dhcpd.conf Начните с определения глобальных параметров, которые являются общими для всех поддерживаемых сетей, в верхней части файла. Они будут применяться ко всем объявлениям: option domain-name "merionet.ru"; option domain-name-servers ns1.merionet.ru, ns2.merionet.ru; default-lease-time 3600; max-lease-time 7200; authoritative; Затем вам необходимо определить диапазон для внутренней подсети и дополнительные настройки: subnet 192.168.1.0 netmask 255.255.255.0 { option routers 192.168.1.1; option subnet-mask 255.255.255.0; option domain-search " merionet.ru "; option domain-name-servers 192.168.1.1; range 192.168.10.10 192.168.10.100; range 192.168.10.110 192.168.10.200; } Тут: subnet – сеть, в которой будут работать настройки; option routers – шлюз по-умолчанию; option subnet-mask – маска подсети; range – диапазон IP-адресов; option domain-name-servers – DNS-сервера; option domain-name – суффикс доменного имени; option broadcast-address — адрес сети для широковещательных запросов; default-lease-time, max-lease-time — время и максимальное время в секундах, на которое DHCP-клиент получит адрес; Обратите внимание, что хосты, которым требуются специальные параметры конфигурации, могут быть перечислены в инструкциях хоста в cправке. man dhcp-options Теперь, когда вы настроили демон DHCP-сервера, вам нужно запустить службу на некоторое время и включить ее автоматический запуск при следующей загрузке системы, а также проверить, работает ли она, используя следующие команды. ------------ CentOS ------------ # systemctl start dhcpd # systemctl enable dhcpd # systemctl enable dhcpd ------------ Ubuntu ------------ $ sudo systemctl start isc-dhcp-server $ sudo systemctl enable isc-dhcp-server $ sudo systemctl enable isc-dhcp-server Затем разрешите выполнение запросов к демону DHCP в брандмауэре, который прослушивает порт 67/UDP, запустив его. ------------ CentOS ------------ # firewall-cmd --zone=public --permanent --add-service=dhcp # firewall-cmd --reload #------------ Ubuntu ------------ $ sudo ufw allow 67/udp $ sudo ufw reload Настройка клиентов DHCP Наконец, вам нужно проверить, нормально ли работает сервер DHCP. Войдите на несколько клиентских компьютеров в сети и настройте их на автоматическое получение IP-адресов с сервера. Измените соответствующий файл конфигурации для интерфейса, на котором клиенты будут автоматически получать IP-адреса. Настройка клиента DHCP на CentOS В CentOS конфигурационные файлы интерфейса находились в /etc/sysconfig/network-scripts/. # vim /etc/sysconfig/network-scripts/ifcfg-eth0 Добавьте следующие параметры: DEVICE=eth0 BOOTPROTO=dhcp TYPE=Ethernet ONBOOT=yes Сохраните файл и перезапустите сетевой сервис (или перезагрузите систему). # systemctl restart network Настройка DHCP-клиента в Ubuntu В Ubuntu 16.04 вы можете настроить интерфейс в файле конфигурации /etc/network/interfaces. $ sudo vi /etc/network/interfaces Добавьте эти строчки: auto eth0 iface eth0 inet dhcp Сохраните файл и перезапустите сетевой сервис (или перезагрузите систему). $ sudo systemctl restart networking В Ubuntu 18.04 сетевое управление контролируется программой Netplan. Вам нужно отредактировать соответствующий файл, например, в каталоге /etc/netplan/ $ sudo vim /etc/netplan/01-netcfg.yaml Затем включите dhcp4 под конкретным интерфейсом, например, под ethernet, ens0, и закомментируйте статические настройки, связанные с IP: network: version: 2 renderer: networkd ethernets: ens0: dhcp4: yes Сохраните изменения и выполните следующую команду, чтобы применить изменения. $ sudo netplan apply Для получения дополнительной информации смотрите справочные страницы dhcpd и dhcpd.conf. $ man dhcpd $ man dhcpd.conf Готово! В этой статье мы рассмотрели, как настроить DHCP-сервер в дистрибутивах CentOS и Ubuntu Linux.
img
Благодаря Linux, у нас есть очень много инструментов облегчающих администрирование и диагностику сети. В этом плане команда PING является одним из самых полезных инструментов для системных и сетевых администраторов. Сама базовая возможность этой утилиты – определить доступен ли тот или иной хост. Тем не менее в этом материале мы приведем примеры расширенных возможностей этой команды в системе Linux. Про Linux за 5 минут | Что это или как финский студент перевернул мир?
img
Все мы любим компьютеры. Они могут делать столько удивительных вещей. За пару десятилетий компьютеры произвели самую настоящую революцию почти во всех аспектах человеческой жизни. Они могут справляться с задачами различной степени сложности, просто переворачивая нули и единицы. Просто удивительно, как такое простое действие может привести к такому уровню сложности. Но я уверен, что вы все знаете, что такой сложности нельзя добиться (практически нельзя) простым случайным переворачиванием чисел. Но за этим стоит определенные логические рассуждения. Есть правила, которые определяют, как это все должно происходить. В данной статье мы обсудим эти правила и увидим, как они управляют «мышлением» компьютера. Что такое булева алгебра? Это правила, о которых я упоминал выше, описываются некой областью математики, называемой булевой алгеброй. В своей книге 1854 года британский математик Джордж Буль предложил использовать систематический набор правил для работы со значениями истинности. Эти правила положили математическую основу для работы с логическими высказываниями. А эти основы привели к развитию булевой алгебры. Для того, чтобы понять, что из себя представляет булева алгебра, сначала мы должны понять сходства и различия между ней и другими формами алгебры. Алгебра в целом занимается изучением математических символов и операций, которые можно выполнять над этими символами. Эти символы сами по себе ничего не значат. Они обозначают некую величину. Именно эти величины и придают ценность этим символам, и именно с этими величинами и выполняются операции. Булева алгебра также имеет дело с символами и правилами, позволяющими выполнять различные операции над этими символами. Разница заключается в том, что эти символы что-то значат. В случае обычной алгебры символы обозначают действительные числа. А в булевой алгебре они обозначают значения истинности. На рисунке ниже представлен весь набор действительных чисел. Набор действительных чисел включает натуральные числа (1, 2, 3, 4, …), положительные целые числа (все натуральные числа и 0), целые числа (…, -2, -1, 0, 1, 2, 3, …) и т.д. Обычная алгебра имеет дело со всем этим набором чисел. Для сравнения, значения истинности состоят из набора, который включает в себя только два значения: True и False. Здесь я хотел бы отметить, что мы можем использовать любые другие символы для обозначения этих значений. Например, в информатике, как правило, эти значения обозначают через 0 и 1 (0 используется в качестве False, 1 – в качестве True). Вы также можете сделать это более оригинальным способом, обозначая значения истинности какими-то другими символами, например, кошки и собаки или бананы и апельсины. Суть здесь в том, что смысл этих значений останется неизменным, как бы вы их не обозначили. Но убедитесь, что вы не меняете символы в процессе выполнения операций. Теперь вопрос в том, что если (True и False), (0 и 1) – это просто обозначения, то что же они пытаются обозначить? Смысл, лежащий в основе значений истинности, исходит из области логики, где значения истинности используются для того, чтобы определить, является ли высказывание «Истинным» (True) или «Ложным» (False). Здесь значения истинности обозначают соответствие высказывания истине, то есть показывают, является ли высказывание истинным или ложным. Высказывание – это просто некоторое утверждение, что-то вроде «Все кошки милые». Если приведенное выше высказывание верно, то мы присваиваем ему значение истинности «Истина» (True) или «1», в противном случае мы присваиваем ему значение истинности «Ложь» (False) или «0». В цифровой электронике значения истинности используются для обозначения состояний электронных схем «включено» и «выключено». Подробнее об этом мы поговорим позже в этой же статье. Логические операции и таблицы истинности Как и в обычной алгебре, в булевой алгебре также можно применять операции к значениям для получения некоторых результатов. Однако эти операции не похожи на операции в обычной алгебре, поскольку, как мы уже упоминали ранее, булева алгебра работает со значениями истинности, а не с действительными числами. В булевой алгебре есть три основные операции. OR: OR или "ИЛИ", также известная как дизъюнкция. Эта операция выполняется над двумя логическими переменными. Результатом операции OR будет 0, если оба операнда равны 0, иначе будет 1. Для того, чтобы более наглядно продемонстрировать принцип работы этой операции, визуализируем ее с помощью таблицы истинности. Таблицы истинности дают нам хорошее представление о том, как работают логические операции. Также это удобный инструмент для выполнения логических операций. Операция OR: Переменная 1 Переменная 2 Результат 0 0 0 0 1 1 1 0 1 1 1 1 AND: AND или "И", также известная как конъюнкция. Эта операция выполняется над двумя логическими переменными. Результатом операции AND будет 1, если оба операнда равны 1, иначе будет 0. Таблица истинности выглядит следующим образом. Операция AND: Переменная 1 Переменная 2 Результат 0 0 0 0 1 0 1 0 0 1 1 1 NOT: NOT или "НЕ", также известное как отрицание. Эта операция выполняется только над одной переменной. Если значение переменной равно 1, то результатом этой операции будет 0, и наоборот, если значение переменной равно 0, то результатом операции будет 1. Операция NOT: Переменная 1 Результат 0 1 1 0 Булева алгебра и цифровые схемы Булева алгебра после своего появления очень долго оставалась одним из тех понятий в математике, которые не имели какого-то значительного практического применения. В 1930-х годах Клод Шеннон, американский математик, обнаружил, что булеву алгебру можно использовать в схемах, где двоичные переменные могут обозначать сигналы «низкого» и «высокого» напряжения или состояния «включено» и «выключено». Эта простая идея создания схем с помощью булевой алгебры привела к развитию цифровой электроники, которая внесла большой вклад в разработку схем для компьютеров. Цифровые схемы реализуют булеву алгебру при помощи логических элементов – схем, обозначающих логическую операцию. Например, элемент OR будет обозначать операцию OR. То же самое относится и к элементам AND и NOT. Наряду с основными логическими элементами существуют и логические элементы, которые можно создать путем комбинирования основных логических элементов. NAND: элемент NAND, или "И-НЕ", образован комбинацией элементов NOT и AND. Элемент NAND дает на выходе 0, если на обоих входах 1, в противном случае – 1. Элемент NAND обладает свойством функциональной полноты. Это означает, что любая логическая функция может быть реализована только с помощью элементов NAND. Элемент NAND: Вход 1 Вход 2 Результат 0 0 1 0 1 1 1 0 1 1 1 0 NOR: элемент NOR, или "ИЛИ-НЕ", образован комбинацией элементов NOT и OR. Элемент NOR дает на выходе 1, если на обоих входах 0, в противном случае – 0. Элемент NOR, как и элемент NAND, обладает свойством функциональной полноты. Это означает, что любая логическая функция может быть реализована только с помощью элементов NOR. Элемент NOR: Вход 1 Вход 2 Результат 0 0 1 0 1 0 1 0 0 1 1 0 Большинство цифровых схем построены с использованием элементов NAND и NOR из-за их функциональной полноты, а также из-за простоты изготовления. Помимо элементов, рассмотренных выше, существуют также особые элементы, которые служат для определенных целей. Вот они: XOR: элемент XOR, или "исключающее ИЛИ", - это особый тип логических элементов, который дает на выходе 0, если оба входа равны 0 или 1, в противном случае – 1. Элемент XOR: Вход 1 Вход 2 Результат 0 0 0 0 1 1 1 0 1 1 1 0 XNOR: элемент XNOR, или "исключающее ИЛИ-НЕ", - это особый тип логических элементов, который дает на выходе 1, когда оба входа равны 0 или 1, в противном случае – 0. Элемент XNOR: Вход 1 Вход 2 Результат 0 0 1 0 1 0 1 0 0 1 1 1 Заключение Итак, на этом мы можем закончить обсуждение булевой алгебры. Надеюсь, что к текущему моменту у вас сложилась неплохая картина того, что же такое булева алгебра. Это, конечно, далеко не все, что вам следует знать о булевой алгебре. В ней есть множество понятий и деталей, которые мы не обсудили в данной статье.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59