По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
YAML (YAML – Ain’t Markup Language, что можно перевести как "YAML – это не язык разметки"") считается языком сериализации по типу XML и JSON. Он представляет собой расширенную версию JSON, которая используется, в основном, для файлов конфигурации. Вы можете сохранить YAML-файл с расширением .yaml или .yml. Это удобочитаемый файловый формат, состоящий из пар «ключ-значение» и делающий акцент на отступы и отбивку строк. YAML активно используется в файлах конфигурации многих хорошо известных инструментов/технологий, по типу docker-compose, Kubernetes, Ansible и т.д. Ниже приведено сравнение YAML с XML и JSON. Теперь давайте обсудим синтаксис, типы данных и особенности YAML-файлов. Пары «ключ-значение» Пара «ключ-значение» – это базовая составляющая YAML. Каждый элемент в YAML-документе является членом как минимум одного словаря. Ключами чаще всего являются строки, а значением могут быть данные любого типа: число, логическое значение, строка, пустое значение, массив и объект. name: John age: 25 city: LA Числа Числа – это одни из скаляров, которые могут использоваться в качестве значения YAML-файлов. Числа бывают десятичными, с плавающей запятой, экспоненциальными, восьмеричными и шестнадцатеричными. Если добавлять их без одинарных или двойных кавычек, то они обрабатываются как строки. decimal : 10 float : 2.5 exponential : 5.0e+12 infinity : .inf octal : 0o12 hexadecimal : 0xF Примечание: Будьте осторожны при представлении некоторых стандартных типов чисел (время, восьмеричные и шестнадцатеричные коды и т.д.). Они могут быть некорректно интерпретированы. Вот несколько примеров. time : 6:00 hexval: 0x12 octval: 0o25 В этом примере время преобразуется в минуты, поэтому 6:00 интерпретируется как 360. 0x12 обрабатывается как шестнадцатеричный код, поэтому оно переводится в десятеричное значение 18, а 0o25 интерпретируется в десятеричное значение 21. Так что если вы не собираетесь использовать их в таком виде, то добавляйте эти значения в кавычках. Примечание: Начиная со спецификации YAML 1.2, 0o представляет восьмеричные значения. В более ранних версиях для этих целей использовался 0. Логические значения Логические значения похожи на другие языки программирования/представления с двумя состояниями: true или false. Логическими значениями в YAML-файлах считаются не только стандартные true/false, но также yes/no и on/off (исключение: если они добавлены в кавычках). Примечание: Следите за тем, как вы используете значения yes/no и on/off. Если добавлять их не в одинарных кавычках, то они будут интерпретироваться как логические значения true/false. Комментарии Вы можете комментировать содержимое YAML-файла с помощью символа #. Пример ниже: # This a comment on the first. # And this a commented second line. Строки В YAML-файле вы можете прописывать строки без кавычек. Либо добавлять их в одинарные или двойные кавычки. Можно даже пользоваться всеми тремя способами. Если в строке содержатся специальные символы, которые нужно экранировать с помощью , то добавлять такую строку нужно в двойных кавычках. Пример: signature: "John Williams Sales Executive XYZ Company LA." Но при использовании любого из специальных символов ниже: :, {, }, [, ], ,, &, *, #, ?, |, -, , =, !, %, @, ` не нужно ничего экранировать. Воспользуйтесь одинарными кавычками – с ними строка будет интерпретироваться как нужно. Одиночная строка Если вы хотите разбить одну строку на несколько строчек, но синтаксический анализатор должен будет интерпретировать их как одиночную строку, то сделайте следующее: message: > this is a normal string which spans more than multiple lines but needs to be treated as a single line. Начните код с символа > , а затем впишите содержимое строки в виде блока с отступами. В конце проанализированного содержимого добавляется . Если вам не нужен символ новой строки, то воспользуйтесь символом >-. Многострочное значение При добавлении строки, которая разделяется на несколько строк и анализируется так же, как написана, воспользуйтесь схемой ниже. message: | this is a multi-line string which spans across multiple lines and needs to be treated as a multi-line string. | добавляет в конце проанализированного содержимого символ перехода на новую строку. Если вы не хотите видеть в конце проанализированного содержимого символ , то лучше воспользуйтесь |-. Нулевые значения Вы можете представить нулевое значение с помощью ~ или null. Такие значения добавляются без кавычек. foo: ~ bar: null Массивы В YAML значения можно представить в форме массивов/списков. Пример массива данных: teams: - name: Australia rank: 3 - name: New Zealand rank: 4 - name: England rank: 1 - name: India rank: 2 В примере выше представлен массив объектов с названием и рангом команды. Обязательно проверьте, что отбивка строк и отступы заданы единообразно. В противном случае, файл будет некорректным. Каждый элемент массива обозначается через дефис -. Все элементы должны находиться на одном уровне с одинаковыми отступами. Если вместо объектов в массиве используются примитивные элементы, то их можно представить следующим образом: teams: [ Australia, New Zealand, England, India ] Объекты Объекты в YAML представляются так: student: name: John age: 22 city: NY college: NYU gpa: 3.5 Все атрибуты внутри объекта должны находиться на одном уровне и с одинаковым отступом. Именно это условие указывает на принадлежность к одному объекту и гарантирует корректность YAML-документа. Заключение В данной статье вы познакомились с базовыми концепциями при работе с YAML-файлами. Разобравшись в них, вы поймете, как правильно прописывать файлы для своих собственных инструментов и технологий.
img
В последние несколько лет всё чаще появляется информация об очередных хакерских атаках, направленных на сетевое оборудование различных производителей. И если оборудование класса Enterprise, такое как Cisco, Juniper, Extreme, HP и так далее, обычно обслуживается армией высококвалифицированных специалистов, которые постоянно проводят обновления и закрывают “дыры”, то с оборудованием класса SOHO (MikroTik, Netgear, TP-Link, Lynksys) дела, зачастую, обстоят совсем иначе. А ведь недостаточное внимание, уделяемое сетевому оборудованию, может нанести вред любому бизнесу. В данной статье мы хотим рассказать о ещё одном крайне действенном способе защиты оборудования MikroTik, которое не потребует о вас больших усилий в настройке и будет само автоматически обновлять свою конфигурацию без вашего вмешательства. Предыстория В конце марта 2018 года появилась информация о хакерской активности, которая как раз направлена на SOHO сегмент. В частности – на роутеры MikroTik под управлением RouterOS ниже версии v6.38.5. Суть заключалась в том, что некий хакерский ботнет сканировал множество публичных IP-адресов на предмет открытых портов 80 (www) и 8291 (WinBox), чтобы по ответам оборудования определить, что это RouterOS, а также выяснить его версию. Тогда производитель заявил, что уязвимость реализации протокола www (80), которую можно было бы использовать, была закрыта ещё в марте 2017 версией v6.38.5 и рекомендовал всем обновиться, а также отключить небезопасный сервис www. Нужно отметить, что ботнет только собирал информацию, никаких атак не предпринималось. Внимание! Если на вашем роутере MikroTik установлена версия прошивки ниже v6.38.5, мы рекомендуем незамедлительно произвести обновление до последней актуальной версии. Как это сделать, вы можете почитать в нашей статье. Также, рекомендуем закрыть сервис www и настроить доступ к WinBox только с доверенных IP-адресов более подробно о том как это сделать читайте здесь. А совсем недавно на сайте подразделения Cisco, которое занимается кибербезопасностью - Talos, появилась информация о вредоносном программном обеспечении, которое использует ту самую уязвимость. Оно получило название VPNFilter, хоть и не имеет ничего общего с VPN туннелями. Вероятно потому, что после заражения оно создаёт директории /var/run/vpnfilterw и /var/run/vpnfilterm для дальнейшей работы. По самым поверхностным оценкам, вредонос способен красть пользовательские данные и данные вэб-приложений, устанавливать без ведома пользователя модули, которые взаимодействуют с серверами в сети Tor, а также полностью выводить оборудования из строя посредством изменения критически важных файлов прошивки. До конца вредонос ещё не изучен и актуальные данные по нему всё ещё поступают. Пока известно о том, что уязвимости подвержено всего 3 модели оборудования MikroTik -1016, 1036 и 1072, но защитить другие модели будет не лишним. Настройка Итак, перейдём собственно к тому самому универсальному методу защиты, о котором мы упомянули вначале. Данный метод основан на простом блокировании заведомо вредоносных IP-адресов, которые были замечены в подозрительной активности (сканнирование, брутфорс, неудачные попытки доступа к различным сервисам) но только не вручную, а в автоматическом режиме. Существует много открытых ресурсов, которые собирают информацию о таких “чёрных” IP-адресах и генерируют актуальные списки, которые мы можем просто загружать на наш роутер с помощью нехитрого скрипта. К таким ресурсам относятся: Blocklist.DE - бесплатный открытый ресурс, созданный специалистами, чьи сервера часто подвергаются различного рода атакам, таким как атаки ssh, почтовых и файловых сервисов, вэб-серверов и другое. IP-адреса атакующих заносятся в список и выкладываются в общий доступ; dshield.org - генерирует списки из топ-20 подсетей, из которых за последние 3-е суток совершалось наибольшее число атак; Spamhaus - генерирует списки IP-адресов, замеченных в “спаммерской” активности, а также “угнанных” устройств, с помощью которых также осуществляется вредоносная деятельность; Итак, чтобы нам заблокировать адреса из этих списков, нужно сначала создать блокирующее правило на нашем роутере. Для этого подключаемся к нашему MikroTik и даём в консоль следующие команды: ip firewall raw add chain=prerouting src-address-list="sbl dshield" action=drop comment="sbl dshield" ip firewall raw add chain=prerouting src-address-list="sbl spamhaus" action=drop comment="sbl spamhaus" ip firewall raw add chain=prerouting src-address-list="sbl blocklist.de" action=drop comment="sbl blocklist.de" Тем самым, мы создали 3 правила, которые будут блокировать подключения к нашему роутеру из списков каждого ресурса соответственно – dshield, spamhaus и blocklist.de. Теперь нужно настроить автоматический загрузчик, который будет обращаться на данные ресурсы за актуальными списками и загружать их в конфигурацию роутера. Для этого через WinBox откроем вкладку System → Sheduler → + И создадим задачу на проверку обновления списков вредоносных ресурсов начиная с полуночи следующего числа каждые 12 часов. Обращение будет происходить посредством простого http запроса к ресурсу www.squidblacklist.org/downloads/drop.malicious.rsc. Для этого в поле On Event напишем простой скрипт: /tool fetch address=www.squidblacklist.org host=www.squidblacklist.org mode=http src-path=/downloads/drop.malicious.rsc Мы будем обращаться к ресурсу www.squidblacklist.org, потому что его специалисты любезно скомпоновали списки с dshield, spamhaus и blocklist.de в одном месте и нам не придётся писать скрипт обращения для каждого ресурса. Должно получиться как то так: Теперь создадим ещё одну задачу на импорт списка в конфигурацию роутера, спустя минуту после того, как отработает проверка актуальности списков из первой задачи. На этот раз в поле On Event напишем: :log warning "Disabling system Logging"; import drop.malicious.rsc /system logging enable 0 Теперь наш роутер будет автоматически запрашивать актуальные списки вредоносных IP-адресов и добавлять их в блок. Вы так же можете использовать другие открытые ресурсы, на которых публикуются списки опасных IP-адресов.
img
Почитайте предыдущую статью из цикла про Основы IPv4 Access Control Lists. Когда вы думаете о месте и направлении ACL, вы, должно быть, уже думаете о том, какие пакеты вы планируете фильтровать (отбрасывать), а какие хотите пропустить. Чтобы сообщить маршрутизатору те же идеи, вы должны настроить маршрутизатор с IP ACL, который соответствует пакетам. Соответствующие пакеты относятся к тому, как настроить команды ACL для просмотра каждого пакета, перечисляя, как определить, какие пакеты следует отбросить, а какие разрешить. Каждый IP ACL состоит из одной или нескольких команд конфигурации, каждая из которых содержит подробную информацию о значениях, которые нужно искать в заголовках пакетов. Как правило, команда ACL использует такую логику, как "найдите эти значения в заголовке пакета и, если они найдены, отвергните пакет" (вместо этого может быть разрешение пакета, а не его отбрасывание.) В частности, ACL ищет поля заголовка, которые вы уже должны хорошо знать, включая IP-адреса источника и назначения, а также номера портов TCP и UDP. Давайте сначала рассмотрим пример с рисунка 2, в котором нам необходимо разрешить прохождение пакетов с хоста A на сервер S1, но отбросить пакеты от хоста B, идущие на тот же сервер. Все хосты теперь имеют IP-адреса, а на рисунке показан псевдокод ACL на R2. На рисунке 2 также показано расположение, выбранное для включения ACL: входящий на интерфейсе S0/0/1 R2. На рисунке 2 показан ACL, состоящий из двух строк в прямоугольнике внизу с простой логикой сопоставления: оба оператора просто ищут совпадение с исходным IP-адресом в пакете. Когда этот параметр включен, R2 просматривает каждый входящий IP-пакет на этом интерфейсе и сравнивает каждый пакет с этими двумя командами ACL. Пакеты, отправленные хостом A (исходный IP-адрес 10.1.1.1), разрешены, а пакеты, отправленные хостом B (исходный IP-адрес 10.1.1.2), отбрасываются. Принятие мер при возникновении совпадения. При использовании ACL IP для фильтрации пакетов можно выбрать только одно из двух действий. Команды настроек используют ключевые слова deny и allow, и они означают (соответственно) отбросить пакет или разрешить ему продолжать работу, как если бы ACL не существовал. Здесь основное внимание уделяется использованию ACL для фильтрации пакетов, но IOS использует ACL для многих других функций. Эти функции обычно используют одну и ту же логику сопоставления. Однако в других случаях ключевые слова deny или allow подразумевают другое действие. Типы ACL IP Cisco IOS поддерживает ACL IP с первых дней существования маршрутизаторов Cisco. Начиная с исходных стандартных пронумерованных списков контроля доступа IP на заре IOS, которые могли задействовать логику, показанную ранее на рисунке 2, Cisco добавила множество функций ACL, включая следующие: Стандартные нумерованные списки ACL (1–99) Расширенные нумерованные ACL (100–199) Дополнительные номера ACL (1300–1999 стандартные, 2000–2699 расширенные) Именованные ACL Улучшенное редактирование с порядковыми номерами Здесь мы рассматриваем исключительно стандартные пронумерованные списки контроля доступа IP, а в следующей лекции рассмотрим другие три основные категории списков контроля доступа IP. Вкратце, списки управления доступом IP будут либо пронумерованы, либо именованы, так как конфигурация идентифицирует ACL с использованием номера или имени. ACL также будут стандартными или расширенными, при этом расширенные ACL будут иметь гораздо более надежные возможности для сопоставления пакетов. Рисунок 3 суммирует основные идеи, связанные с категориями списков контроля доступа IP. Стандартные нумерованные списки ACL IPv4 Этот подраздел лекции посвящен типу фильтра Cisco (ACL), который соответствует только исходному IP-адресу пакета (стандарт), настроен для идентификации ACL с использованием чисел, а не имен (пронумерованных), и смотрит на пакеты IPv4.В этой части исследуются особенности стандартных пронумерованных списков контроля доступа IP. Во-первых, он исследует идею о том, что один ACL является списком, и какую логику использует этот список. После этого в тексте подробно рассматривается, как сопоставить поле IP-адреса источника в заголовке пакета, включая синтаксис команд. В конце этой лекции дается полный обзор команд конфигурации и проверки для реализации стандартных ACL. Логика списка с IP ACL Один ACL - это одновременно и единый объект, и список одной или нескольких команд конфигурации. Как единый объект, конфигурация включает весь ACL на интерфейсе в определенном направлении, как показано ранее на рисунке 1. В виде списка команд каждая команда имеет различную логику согласования, которую маршрутизатор должен применять к каждому пакету при фильтрации с использованием этого ACL.При обработке ACL маршрутизатор обрабатывает пакет по сравнению с ACL следующим образом: ACL используют логику первого совпадения. Как только пакет соответствует одной строке в ACL, роутер выполняет действие, указанное в этой строке ACL, и прекращает поиск в ACL.Чтобы понять, что это означает, рассмотрим пример, построенный на рисунке 4. На рисунке показан пример ACL 1 с тремя строками псевдокода. В этом примере ACL 1 применяется к входящему интерфейсу S0/0/1 R2 (то же расположение, что и на предыдущем рисунке 2). Рассмотрим логику ACL первого совпадения для пакета, отправленного хостом A на сервер S1. Исходным IP-адресом будет 10.1.1.1, и он будет маршрутизирован так, чтобы входить в интерфейс S0/0/1 R2, управляя логикой ACL 1 R2. R2 сравнивает этот пакет с ACL, сопоставляя первый элемент в списке с действием разрешения. Таким образом, этот пакет должен быть пропущен, как показано на рисунке 5 слева. Затем рассмотрим пакет, отправленный хостом B, исходный IP-адрес 10.1.1.2. Когда пакет поступает в интерфейс S0/0/1 R2, R2 сравнивает пакет с первым оператором ACL 1 и не находит соответствия (10.1.1.1 не равно 10.1.1.2). Затем R2 переходит ко второму утверждению, которое требует некоторого пояснения. Псевдокод ACL, показанный на рисунке 4, показывает 10.1.1.x, что означает сокращение того, что в последнем октете может существовать любое значение. Сравнивая только первые три октета, R2 решает, что этот последний пакет действительно имеет IP-адрес источника, который начинается с первых трех октетов 10.1.1, поэтому R2 считает, что это соответствует второму оператору. R2 выполняет указанное действие (запретить), отбрасывая пакет. R2 также останавливает обработку ACL для пакета, игнорируя третью строку в ACL. Наконец, рассмотрим пакет, отправленный хостом C, снова на сервер S1. Пакет имеет IP-адрес источника 10.3.3.3, поэтому, когда он входит в интерфейс R2 S0/0/1 и управляет обработкой ACL на R2, R2 просматривает первую команду в ACL 1. R2 не соответствует первой команде ACL (10.1.1.1). в команде не совпадает с пакетом 10.3.3.3). R2 просматривает вторую команду, сравнивает первые три октета (10.1.1) с IP-адресом источника пакета (10.3.3) и по-прежнему не находит совпадения. Затем R2 смотрит на третью команду. В этом случае подстановочный знак означает игнорирование последних трех октетов и просто сравнение первого октета (10), чтобы пакет соответствовал. Затем R2 выполняет указанное действие (разрешение), позволяя пакету продолжить работу. Эта последовательность обработки ACL в виде списка происходит для любого типа IOS ACL: IP, других протоколов, стандартных или расширенных, именованных или пронумерованных. Наконец, если пакет не соответствует ни одному из элементов в ACL, пакет отбрасывается. Причина в том, что каждый IP ACL имеет оператор deny all, подразумеваемый в конце ACL. Его нет в конфигурации, но если маршрутизатор продолжает поиск в списке, и до конца списка не найдено совпадение, IOS считает, что пакет соответствует записи, имеющей действие запрета. Соответствие логики и синтаксиса команд Стандартные нумерованные ACL для IP-адресов используют следующую команду: access-list {1-99 | 1300-1999} {permit | deny} matching-parameters Каждый стандартный нумерованный ACL имеет одну или несколько команд списка доступа с одинаковым номером, любым числом из диапазонов, показанных в предыдущей строке синтаксиса. IOS относится к каждой строке в ACL как к записи управления доступом (ACE), но многие сетевые администраторы просто называют их операторами ACL.Помимо номера ACL, каждая команда списка доступа также перечисляет действие (разрешить или запрещать), а также логику сопоставления. Остальная часть этой части изучает, как настроить параметры сопоставления, что для стандартных списков ACL означает, что вы можете сопоставить исходный IP-адрес или части исходного IP-адреса только с помощью так называемой обратной маски ACL. Соответствие точному IP-адресу Чтобы сопоставить конкретный исходный IP-адрес, весь IP-адрес, все, что вам нужно сделать, это ввести этот IP-адрес в конце команды. Например, в предыдущем примере псевдокод используется для "разрешить, если источник = 10.1.1.1". Следующая команда настраивает эту логику с правильным синтаксисом с использованием ACL номер 1: access-list 1 permit 10.1.1.1 Сопоставить точный полный IP-адрес очень просто.В более ранних версиях IOS синтаксис включал ключевое слово host. Вместо того, чтобы просто вводить полный IP-адрес, вы сначала набираете ключевое слово host, а затем IP-адрес. Обратите внимание, что в более поздних версиях IOS, если вы используете ключевое слово host, IOS принимает команду, но затем удаляет ключевое слово. Сопоставление адреса подсети с обратной маской Часто бизнес-цели, которые вы хотите реализовать с помощью ACL, совпадают не с одним конкретным IP-адресом, а с целым рядом IP-адресов. Возможно, вы хотите сопоставить все IP-адреса в подсети. Возможно, вы хотите сопоставить все IP-адреса в диапазоне подсетей. Несмотря на это, вы хотите проверить наличие нескольких IP-адресов в диапазоне адресов. IOS позволяет стандартным ACL сопоставлять диапазон адресов с помощью инструмента, называемого обратной маской. Обратите внимание, что это не маска подсети. Обратная маска (сокращенно называют маской WC) дает сетевому администратору способ сказать IOS игнорировать части адреса при проведении сравнений, по существу рассматривая эти части как подстановочные знаки, как если бы они уже совпадали.Вы можете использовать маски WC в десятичном и двоичном виде, и оба имеют свое применение. Для начала можно использовать маски WC в десятичной системе счисления, используя следующие правила: Десятичное число 0: маршрутизатор должен сравнить этот октет как обычно. Десятичное число 255: маршрутизатор игнорирует этот октет, считая его уже совпадающим. Имея в виду эти два правила, рассмотрим рисунок 6, который демонстрирует эту логику с использованием трех различных, но популярных масок WC: одна, которая говорит маршрутизатору игнорировать последний октет, другая, которая говорит маршрутизатору игнорировать последние два октета, и третья, которая говорит маршрутизатору игнорировать последние три октета. Все три примера во вставках на рисунке 6 показывают два числа, которые явно различаются. Маска WC заставляет IOS сравнивать только некоторые октеты, игнорируя другие октеты. Все три примера приводят к совпадению, поскольку каждая подстановочная маска указывает IOS игнорировать некоторые октеты. В примере слева показана маска WC 0.0.0.255, которая указывает маршрутизатору обрабатывать последний октет как подстановочный знак, по существу игнорируя этот октет для сравнения. Точно так же в среднем примере показана маска WC 0.0.255.255, которая сообщает маршрутизатору игнорировать два октета справа. В крайнем правом случае показана маска WC 0.255.255.255, указывающая маршрутизатору игнорировать последние три октета при сравнении значений. Чтобы увидеть маску WC в действии, вспомните предыдущий пример, относящийся к рисункам 4 и 5. В ACL псевдокода на этих двух рисунках используется логика, которую можно создать с помощью маски WC. Напомним, что логика ACL псевдокода на этих двух рисунках включает следующее: Строка 1: Сопоставить и разрешить все пакеты с адресом источника соответствующий строго 10.1.1.1. Строка 2: Сопоставить и отклонить все пакеты с адресами источника с первыми тремя октетами 10.1.1. Строка 3: сопоставить и разрешить все адреса с первым одиночным октетом 10. На рисунке 7 показана обновленная версия рисунка 4, но с завершенным правильным синтаксисом, включая маски WC. В частности, обратите внимание на использование маски WC 0.0.0.255 во второй команде, указывающей R2 игнорировать последний октет числа 10.1.1.0, и маску WC 0.255.255.255 в третьей команде, указывающую R2 игнорировать последние три октеты в значении 10.0.0.0. Наконец, обратите внимание, что при использовании маски WC свободно определенный параметр источника команды access-list должен иметь значение 0 в любых октетах, где маска WC - 255. IOS будет указывать адрес источника равным 0 для частей, которые будут игнорироваться, даже если были настроены ненулевые значения. Теперь почитайте про wildcard в ACL: бинарные обратные маски
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59