По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Привет всем! В сегодняшней статье хотим рассказать о том, как защитить исходящие маршруты во FreePBX списком паролей. Мы покажем, как создать множество PIN-кодов, которые необходимо будет набрать прежде чем открылась возможность совершения вызова через тот или иной исходящий маршрут. Как можно догадаться, для этих целей во FreePBX существует специальный модуль - PIN Sets, о нём и поговорим. Обзор Модуль PIN Sets позволяет создавать группы и привязывать к ним список определённых паролей (нас самом деле - PIN-кодов). Затем, через модуль Outbound Route можно сократить пользование исходящим маршрутом только до определённой группы. Получается такое расширение функций поля Route Password в настройках исходящего маршрута только вместо одного PIN-кода мы теперь можем ввести много разных. Например, мы можем создать группу ”Sales” (Продавцы) и задать в ней 3 PIN-кода, один для руководителя отдела продаж, и ещё два для менеджеров, а затем каждому сообщить свой PIN. Потом назначить данную группу на определённый маршрут и каждый раз, когда кто-то захочет сделать внешний вызов через этот маршрут, ему будет предложено сначала ввести PIN. Настройка Перейдём к настройке. Модуль PIN Sets располагается в разделе Settings: Описание модуля говорит нам, что он используется для управления PIN-кодами для доступа к “запрещённым фичам” таким как Outbound Routes (исходящие маршруты). Но на самом деле, кроме как в модуле Outbound Route функционал PIN Sets больше нигде применить нельзя. Существует коммерческая реализация данного модуля – PIN Sets Pro. Она позволяет создавать наборы PIN-кодов индивидуально для внутренних номеров, а также строит отчёты по использованию данных PINов. Для того, чтобы создать новую группу кликаем Add Pinset: Перед нами открывается окно с параметрами для добавления новой группы: Описание каждого параметра модуля: PIN Set Description - Описание для данной группы; Record In CDR - Параметр, отвечающий за то, записывать ли PIN-коды данной группы в CDR; PIN List - Собственно, сами PIN коды, которые можно будет набрать прежде чем звонить через маршрут. Можно вводить несколько PIN-кодов, записывая их в линию; После создания новой группы нажимаем Submit и Apply Config. А затем отправляемся в модуль Outbound Route, выбираем из списка маршрут, который нужно защитить и открываем его настройки. Предварительно, необходимо убедиться, что на вкладке Route Settings в поле Route Password не стоит никакого пароля. Переходим на вкладку Additional Settings и в поле PIN Sets выбираем только что созданную группу. Теперь, чтобы можно было воспользоваться маршрутом 79012345678 и позвонить во вне, абоненту нужно будет набрать либо PIN-код 48151 либо 62342 как настроено в PIN Sets. Каждому исходящему маршруту может быть назначена только одна группа PIN Set. Если Вы хотите разрешить ещё одной группе пользоваться тем же маршрутом, не внося пароли из неё в первую группу, просто продублируйте маршрут и назначьте ему новую группу PIN Set.
img
Несмотря на доступ к все более эффективному и мощному оборудованию, операции, выполняемые непосредственно на традиционных физических (или «чистых») серверах, неизбежно сталкиваются со значительными практическими ограничениями. Стоимость и сложность создания и запуска одного физического сервера говорят о том, что эффективное добавление и удаление ресурсов для быстрого удовлетворения меняющихся потребностей затруднено, а в некоторых случаях просто невозможно. Безопасное тестирование новых конфигураций или полных приложений перед их выпуском также может быть сложным, дорогостоящим и длительным процессом. Исследователи-первопроходцы Джеральд Дж. Попек и Роберт П. Голдберг в статье 1974 года («Формальные требования к виртуализируемым архитектурам третьего поколения» (“Formal Requirements for Virtualizable Third Generation Architectures”) - Communications of the ACM 17 (7): 412–421) предполагали, что успешная виртуализация должна обеспечивать такую среду, которая: Эквивалента физическому компьютеру, поэтому доступ программного обеспечения к аппаратным ресурсам и драйверам должен быть неотличим от невиртуализированного варианта. Обеспечивает полный контроль клиента над аппаратным обеспечением виртуализированной системы. По возможности эффективно выполняет операции непосредственно на базовых аппаратных ресурсах, включая ЦП. Виртуализация позволяет разделить физические ресурсы вычислений, памяти, сети и хранилища («основополагающая четверка») между несколькими объектами. Каждое виртуальное устройство представлено в своем программном обеспечении и пользовательской среде как реальный автономный объект. Грамотно настроенные виртуальные изолированные ресурсы могут обеспечить более защиту приложений приложений без видимой связи между средами. Виртуализация также позволяет создавать и запускать новые виртуальные машины почти мгновенно, а затем удалять их, когда они перестанут быть необходимыми. Для больших приложений, поддерживающих постоянно меняющиеся бизнес-требования, возможность быстрого вертикального масштабирования с повышением или понижением производительности может означать разницу между успехом и неудачей. Адаптивность, которую предлагает виртуализация, позволяет скриптам добавлять или удалять виртуальные машины за считанные секунды, а не недели, которые могут потребоваться для покупки, подготовки и развертывания физического сервера. Как работает виртуализация? В невиртуальных условиях, архитектуры х86 строго контролируют, какие процессы могут работать в каждом из четырех тщательно определенных уровней привилегий (начиная с Кольца 0 (Ring 0) по Кольцо 3). Как правило, только ядро операционной системы хоста имеет какой-либо шанс получить доступ к инструкциям, хранящимся в кольце под номером 0. Однако, поскольку вы не можете предоставить нескольким виртуальным машинам, которые работают на одном физическом компьютере, равный доступ к кольцу 0, не вызывая больших проблем, необходим диспетчер виртуальных машин (или «гипервизор»), который бы эффективно перенаправлял запросы на такие ресурсы, как память и хранилище, на виртуализированные системы, эквивалентные им. При работе в аппаратной среде без виртуализации SVM или VT-x все это выполняется с помощью процесса, известного как ловушка, эмуляция и двоичная трансляция. На виртуализированном оборудовании такие запросы, как правило, перехватываются гипервизором, адаптируются к виртуальной среде и возвращаются в виртуальную машину. Простое добавление нового программного уровня для обеспечения такого уровня организации взаимодействия приведет к значительной задержке практически во всех аспектах производительности системы. Одним из успешных решений было решение ввести новый набор инструкций в ЦП, которые создают, так называемое, «кольцо 1», которое действует как кольцо 0 и позволяет гостевой ОС работать без какого-либо влияния на другие несвязанные операции. На самом деле, при правильной реализации виртуализация позволяет большинству программных кодов работать как обычно, без каких-либо перехватов. Несмотря на то, что эмуляция часто играет роль поддержки при развертывании виртуализации, она все же работает несколько иначе. В то время как виртуализация стремится разделить существующие аппаратные ресурсы между несколькими пользователями, эмуляция ставит перед собой цель заставить одну конкретную аппаратную/программную среду имитировать ту, которой на самом деле не существует, чтобы у пользователей была возможность запускать процессы, которые изначально было невозможно запустить. Для этого требуется программный код, который имитирует желаемую исходную аппаратную среду, чтобы обмануть ваше программное обеспечение, заставив его думать, что оно на самом деле работает где-то еще. Эмуляция может быть относительно простой в реализации, но она почти всегда несет за собой значительные потери производительности. Согласно сложившимся представлениям, существует два класса гипервизоров: Type-1 и Type-2. Bare-metal гипервизоры (исполняемые на «голом железе») (Type-1), загружаются как операционная система машины и – иногда через основную привилегированную виртуальную машину – сохраняют полный контроль над аппаратным обеспечением хоста, запуская каждую гостевую ОС как системный процесс. XenServer и VMWare ESXi – яркие примеры современных гипервизоров Type-1. В последнее время использование термина «гипервизор» распространилось на все технологии виртуализации хостов, хотя раньше оно использовалось только для описания систем Type-1. Первоначально более общим термином, охватывающим все типы систем, был «Мониторы виртуальных машин». То, в какой степени люди используют термин «мониторы виртуальных машин» все это время, наводит меня на мысль, что они подразумевают «гипервизор» во всех его интерпретациях. Гипервизоры, размещенные на виртуальном узле (Type-2) сами по себе являются просто процессами, работающими поверх обычного стека операционной системы. Гипервизоры Type-2 (включая VirtualBox и, в некотором роде, KVM) отделяют системные ресурсы хоста для гостевых операционных систем, создавая иллюзию частной аппаратной среды. Виртуализация: паравиртуализация или аппаратная виртуализация Виртуальные машины полностью виртуализированы. Иными словами, они думают, что они обычные развертывания операционной системы, которые живут собственной счастливой жизнью на собственном оборудовании. Поскольку им не нужно взаимодействовать со своей средой как-то иначе, чем с автономной ОС, то они могут работать с готовыми немодифицированными программными стеками. Однако раньше за такое сходство приходилось платить, потому что преобразование аппаратных сигналов через уровень эмуляции занимало дополнительное время и циклы. В случае с паравиртуализацией (PV – Paravirtualization) паравиртуальные гости хотя бы частично осведомлены о своей виртуальной среде, в том числе и том, что они используют аппаратные ресурсы совместно с другими виртуальными машинами. Эта осведомленность означает, что хостам PV не нужно эмулировать хранилище и сетевое оборудование, и делает доступными эффективные драйверы ввода-вывода. На первых порах это позволяло гипервизорам PV достигать более высокой производительности для операций, требующих подключения к аппаратным компонентам. Тем не менее, для того, чтобы предоставить гостевой доступ к виртуальному кольцу 0 (т.е. кольцу -1), современные аппаратные платформы – и, в частности, архитектура Intel Ivy Bridge – представили новую библиотеку наборов инструкций ЦП, которая позволила аппаратной виртуализации (HVM – Hardware Virtual Machine) обойти узкое место, связанное с ловушкой и эмуляцией, и в полной мере воспользоваться преимуществами аппаратных расширений и немодифицированных операций ядра программного обеспечения. Также значительно повысить производительность виртуализации может последняя технология Intel – таблицы расширенных страниц (EPT – Extended Page Tables). В связи с этим, в большинстве случаев можно обнаружить, что HVM обеспечивает более высокую производительность, переносимость и совместимость. Аппаратная совместимость Как минимум, несколько функций виртуализации требуют аппаратную поддержку, особенно со стороны ЦП хоста. Именно поэтому вы должны убедиться, что на вашем сервере есть все, что вам необходимо для задачи, которую вы собираетесь ему дать. Большая часть того, что вам нужно знать, храниться в файле /proc/cpuinfo и, в частности, в разделе «flags» (флаги) каждого процессора. Однако вам нужно знать, то искать, потому что флагов будет очень много. Запустите эту команду, чтобы посмотреть, что у вас под капотом: $ grep flags /proc/cpuinfo Контейнерная виртуализация Как мы уже видели ранее, виртуальная машина гипервизора – это полноценная операционная система, чья связь с аппаратными ресурсами «основополагающей четверки» полностью виртуализирована – она думает, что работает на собственном компьютере. Гипервизор устанавливает виртуальную машину из того же ISO-образа, который вы загружаете и используете для установки операционной системы непосредственно на пустой физический жесткий диск. Контейнер в свою очередь фактически представляет собой приложение, запускаемое из скриптообразного шаблона, которое считает себя операционной системой. В контейнерных технологиях, таких как LXC и Docker, контейнеры – это не что иное, как программные и ресурсные (файлы, процессы, пользователи) средства, которые зависят от ядра хоста и представления аппаратных ресурсов «основополагающей четверки» (т.е. ЦП, ОЗУ, сеть и хранилище) для всего, то они делают. Конечно, с учетом того, что контейнеры фактически являются изолированными расширениями ядра хоста, виртуализация Windows (или более старых или новых версий Linux с несовместимыми версиями libc), например, на хосте Ubuntu 16.04 будет сложна или невозможна. Но эта технология обеспечивает невероятно простые и универсальные вычислительные возможности. Перемещение Модель виртуализации также позволяет использовать широкий спектр операций перемещения, копирования и клонирования даже из действующих систем (V2V). Поскольку программные ресурсы, определяющие виртуальную машину и управляющие ею, очень легко идентифицировать, то обычно не требуется очень много усилий для дублирования целых серверных сред в нескольких местах и для разных целей. Иногда это не сложнее, чем создать архив виртуальной файловой системы на одном хосте, распаковать его на другом хосте по тому же пути, проверить основные сетевые настройки и запустить. Большинство платформ предлагают единую операцию командной строки для перемещения гостей между хостами. Перемещение развертываний с физических серверов на виртуализированные среды (P2V) иногда может оказаться немного сложнее. Даже создание клонированного образа простого физического сервера и его импорт в пустую виртуальную машину может сопровождаться определенными трудностями. И как только все это будет выполнено, вам, возможно, придется внести некоторые корректировки в системную архитектуру, чтобы можно было использовать возможности, предлагаемые виртуализацией, в полную силу. В зависимости от операционной системы, которую вы перемещаете, вам также может потребоваться использование паравиртуализированных драйверов для того, чтобы ОС могла корректно работать в своем «новом доме». Как и в любых других ситуациях управления сервером: тщательно все продумывайте заранее.
img
Зачем нужно шифрование и насколько оно важно? Функционирование любых цифровых сервисов невозможно без защиты данных. Еще совсем немного времени назад эта проблема не стояла так остро, так в основной массе устройств использовались относительно защищенные каналы связи. Типичный пример - телефонный кабель между персональным компьютером и провайдером. Даже, если по нему передаются незашифрованные данные, то их похитить затруднительно из-за объективных сложностей физического доступа к телефонной линии, особенно когда она проложена под землей, как это делается в городах. Теперь же, когда все, включая даже финансовые переводы, делается с мобильных устройств, ни о какой защите канала связи не может быть и речи, причем, так как радиоэфир доступен каждому. Значительное количество Wi-Fi карт довольно просто переводятся в режим мониторинга и могут принимать данные, передаваемые другими устройствами. Выход из этой ситуации заключается в использовании совершенных алгоритмов шифрования. Причем к этому решения одновременно пришли многие IT-разработчики в мире. Совершенно определенно, что алгоритмы шифрования должны быть стандартными, принятыми во всех странах мира, так как интернет глобален. При несоблюдении этого правила, то, что передается одним сервером, уже не может быть принято другим, так как алгоритм шифрования не известен. Итак, теперь понятно, что без общепринятых, сертифицированных и надежных алгоритмов шифрования не обойтись. Алгоритм 3DES или Triple DES Самый первый, принятый для использования в сети интернет алгоритм шифрования. 3DES разработан Мартином Хеллманом в 1978 году. Учитывая уже почетный возраст для IT-технологий, по оценкам НИСТ (Национальный Институт Стандартов и Технологий) он останется надежным до 2030-х годов. Несмотря на достаточное количество более современных и значительно более криптостойких алгоритмов, банковские системы продолжают использовать именно старый добрый 3DES, что косвенно говорит о его высокой надежности. Также он активно используется в сети интернет во всем мире. Рассмотрим его работу подробнее. Ну, а самое интересное - почти все более современные алгоритмы шифрования представляют собой доработанный DES. Даже утвержден неформальный термин, как "DES-подобные криптографические системы". В 1977 совместными усилиями многих разработчиков из компании IBM создается алгоритм DES (Data Encryption Standard, "Данные Шифрования Стандарт"), который утверждается правительством США. Всего через год на его основе появится доработанный вариант - 3DES, который предложит Мартин Хеллман и он тоже будет утвержден, как улучшенная версия. DES работает на так называемой сети Фейстеля. Это ни что не иное, как модульные вычисления - многократно повторяемая простая вычислительная операция на нескольких логических ячейках. Именно с этого конца смотрят хакеры, когда для подбора ключей используются майнинг-фермы на процессорах с тысячами ядер CUDA (в видеокартах). Так какие же вычисления выполняет "взломщик"? Ответ - разложение на простые множители или факторизацию с некоторыми дополнительными операциями. Для числа из трех знаков, разложение на простые множители займет несколько минут ручного пересчета, или миллисекунды работы компьютера. Пример - число 589, для которого ключ будет равен 19*31=589. На самом деле, алгоритмы шифрования работают очень просто. Попробуем методом факторизации, известным очень давно, скрыть ключ. Пусть ключом у нас будет число длиной 30 знаков (при работе с байтами и битами это могут быть и буквы). Добавим к нему еще одно число такой же (или отличающейся, это неважно) длины и перемножим их друг на друга: 852093601- 764194923 - 444097653875 х 783675281 - 873982111 - 733391653231 = 667764693545572117833209455404487475025224088909394663420125 Нам сейчас важно то, что на это перемножение мы затратили ничтожную вычислительную мощность. С таким простым умножением можно справиться даже без калькулятора, затратив несколько часов времени. Калькулятор, а там более мощный компьютер сделает это за тысячную долю секунды. Если же мы поставим обратную задачу - восстановить исходные множители, то на это даже на мощном компьютере уйдут годы, и это время будет увеличиваться квадратично по мере прибавления знаков в исходных числах. Таким образом, мы получили одностороннюю функцию, являющуюся базовой для всех распространенных алгоритмов шифрования. Именно на односторонних функциях (хеширование) построен DES, 3DES и последующие (AES) способы защиты информации. Перейдем к их более подробному рассмотрению. Алгоритм AES На данный момент времени самый распространенный алгоритм шифрования в мире. Название расшифровывается, как Advanced Encryption Standard (расширенный стандарт шифрования). AES утвержден национальным институтом технологий и стандартов США в 2001 году и в активном применении находится до сих пор. Максимальная длина шифроключа - 256 бит, что означает, что пароль может иметь до 32 символов из таблицы на 256 значений (кириллица, латиница, знаки препинания и другим символы). Это достаточно надежно даже для современного мира с мощными компьютерными мощностями для перебора (брутфорса). В 16-ричной системе счисления AES может иметь и более длинные ключи, но криптостойкость их точно такая же, ибо конечное число всех возможных вариантов идентичное, вне зависимости от системы счисления. Специалисты не раз отмечали, что в отличие от других шифров AES имеет простое математическое описание, но такие высказывания подвергались критике и опровергались математиками с указаниями ошибок в уравнениях. Тем не менее, Агентство Национальной Безопасности США рекомендует AES для защиты самых важных сведений, составляющих государственную тайну, а это тоже отличный показатель надежности. Ниже приведена блок-схема шифрования AES. Отметим, что разработка алгоритмов шифрования дело не столь сложное, как кажется на первый взгляд. Например, по заверению многих студентов при прохождении предмета "основы криптографии" они разрабатывали собственные "несложные" алгоритмы, наподобие DES. Кстати, все тот же DES имеет множество "клонов" с небольшими нововведениями разработчиков в России и других странах. Российские алгоритмы шифрования Одним из первых шифров, который утверждался официально, стал принятый в 1990 году ГОСТ 28147-89, разработанный на все той же сети Фейстеля. Конечно, алгоритм был разработан почти на целое поколение раньше, и использовался в КГБ СССР, просто необходимость его обнародования возникла только в эпоху цифровых данных. Официально открытым шифр стал только в 1994 году. Шифр "Калина" (тот же ГОСТ 28147-89 для России и ДСТУ ГОСТ 28147:2009 для Украины) будет действовать до 2022 года. За этот период он постепенно будет замещен более современными системами шифрования, такими, как "Магма" и "Кузнечик", поэтому для более подробного обзора в этой статье интересны именно они. "Магма" и "Кузнечик" стандартизованы ГОСТ 34.12-2018. Один документ описывает сразу оба стандарта. "Кузнечик" шифрует любые данные блоками по 128 бит, "Магма" - 64 бита. При этом в "Кузнечике" кусок данных в 128 бит шифруется ключом по 256 бит (34 байта, или пароль в 32 знака с выбором из 256 символов). Миллионы блоков данных шифруются одним ключом, поэтому его не нужно передавать с каждым сообщением заново. То, что ключ занимает больший объем, чем данные, никак не сказывается на работе алгоритма, а только дополнительно придает ему надежности. Конечно, "Кузнечик" разработан не для тех систем, где на счету каждый килобайт, как например, в узкополосной радиосвязи. Он оптимально подходит для применения в IT-сфере. Описание математического аппарата "Кузнечика" - тема отдельной статьи, которая будет понятна лишь людям хотя бы с начальным знанием математики, поэтому мы этого делать не будем. Отметим лишь некоторые особенности: Фиксированная таблица чисел для нелинейного преобразования (приведена в ГОСТ 34.12-2018). Фиксированная таблица для обратного нелинейного преобразования (также приведена в ГОСТ 34.12-2018). Многорежимность алгоритма для способов разбивания шифруемого потока данных на блоки: режим имитовставки, гаммирования, режим простой замены, замены с зацеплением, гаммирования с обратной связью. Помимо шифрования данных "Кузнечик" и "Магма" могут быть использованы для генерации ключей. Кстати, именно в этом была обнаружена их уязвимость. Так, на конференции CRYPTO 2015 группа специалистов заявила, что методом обратного проектирования им удалось раскрыть алгоритм генерации ключей, следовательно, они не являются случайной последовательностью, а вполне предсказуемы. Тем не менее, "Кузнечик" вполне может использоваться для ручного ввода ключа, а это полностью нивелирует данную уязвимость. Большое преимущество алгоритма "Кузнечик" - он может применяться без операционной системы и компьютера. Необходимы лишь маломощные микроконтроллеры. Этот способ описан в журнале Радиопромышленность том 28 №3. По той же технологии возможна разработка прошивок контроллеров и под другие алгоритмы шифрования. Такое решение под силу реализовать на аппаратной основе (микросхемы) даже в любительских условиях. Любительские разработки В конспирологических кругах распространено мнение об уязвимости стандартных алгоритмов шифрования, хотя они давно уже описаны математически и легко проверяются. Есть даже способ "майним биткоины на бумаге", то есть, используя карандаш и лист бумаги, давно было показано, как предварительно переведя данные в шестнадцатиричную систему, их зашифровать и расшифровать стандартным алгоритмом SHA-256, подробно изъяснив каждый момент на пальцах. Тем не менее, находятся люди, желающие разработать свой собственный алгоритм шифрования. Многие из них - студенты, изучающие криптографию. Рассмотрим некоторые интересные способы реализации таких шифров и передачи ключей. Использование картинки для составления ключа и передачи данных. Способ часто применяется для передачи небольших блоков, например ключей. Изменения (растр, фиксируемой программой шифрации/дешифрации) не должны быть заметны простому зрителю. Использование видео. Собственно, это вариант первого способа. Просто, в отличие от картинки, в видео можно зашифровать уже более значительный трафик, например, голосовой обмен в реальном времени. При этом требуется высокое разрешение картинки, что для современных мультимедийных устройств - не проблема. Встраивание данных в аудио. Разработано множество программных продуктов для решения данной задачи, получены соответствующие патенты, например, "Патент США 10,089,994" на "Аудио водяные знаки". Простые шифры замены на основе словарей, например, Библии, или менее известной литературы. Способ шифрования хорошо знаком по шпионским фильмам и наиболее прост для любительского применения. Динамичные ключи, автоматически изменяемые по параметрам устройства. Например, отслеживается 100 параметров ПК (объем диска, температура процессора, дата и время) и на их основе программа автоматически генерирует ключ. Способ очень удобен для автомобильных сигнализаций, считывающих все параметры по шине CAN. Способов шифровать данные огромное множество и все их можно разделить на шифр замены и шифр перестановки, а также комбинацию этих обоих способов. Алгоритмы шифрования и криптовалюты Совершенствование алгоритмов шифрования стало одним из основных факторов возникновения всемирного бума криптовалют. Сейчас уже очевидно, что технология блокчейн (в основе нее лежат все те же алгоритмы шифрования) будет иметь очень широкое применение в будущем. Для выработки криптовалют (майнинга) используются разнообразные компьютерные мощности, которые могут быть использованы для взлома различных алгоритмов шифрования. Именно поэтому в криптовалютах второго и последующих поколений эту уязвимость постепенно закрывают. Так Биткоин (криптовалюта первого поколения) использует для майнинига брутфорс SHA-256 и майнинг-ферма с небольшой перенастройкой может быть использована для взлома данного алгоритма. Эфириум, уже имеет свой собственный алгоритм шифрования, но у него другая особенность. Если для биткоина используются узкоспециализированные интегральные микросхемы (асики), неспособные выполнять никаких других операций, кроме перебора хешей в SHA-256, то эфириум "майнится" уже на универсальных процессорах с CUDA-ядрами. Не забываем, что криптовалюты только начали свое шествие по миру и в недалеком будущем эти недостатки будут устранены. Плата ASIC-майнера содержит одинаковые ячейки со специализированными процессорами для перебора строк по алгоритму шифрования SHA-256 Алгоритмы шифрования и квантовый компьютер Сделав обзор по современным алгоритмам шифрования, нельзя не упомянуть такую тему, как квантовый компьютер. Дело в том, что его создатели то и дело упоминают о "конце всей криптографии", как только квантовый компьютер заработает. Это было бы недостойно обсуждения в технических кругах, но такие заявления поступают от гигантов мировой индустрии, например транснациональной корпорации Google. Квантовый компьютер обещает иметь чрезвычайно высокую производительность, которая сделает бесполезной криптографию, так как любое шифрование будет раскрываться методом брутфорса. Учитывая, что на шифровании, в некотором смысле, стоит современный мир, например финансовая система, государства, корпорации, то изобретение квантового компьютера изменит мир почти также, как изобретение вечного двигателя, ибо у человечества уже не будет основного способа скрывать информацию. Пока, что, заявления о работающей модели квантового компьютера оставим для обсуждения учеными. Очевидно, что до работающей модели еще очень далеко, так, что криптографические алгоритмы продолжат нести свою службу по защите информации во всем мире.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59