По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
В современной среде информационной безопасности преобладают криптоминирующие вредоносные программы, также известные как криптоджеккинг. В 2019 году 38% всех компаний в мире пострадали от такого вредоносного ПО. В этой статье мы подробно рассмотрим типологию крипто-вредоносных программ и обсудим пять самых крупных крипто-вредоносных атак. Кроме того, дадим несколько кратких рекомендаций о том, как защититься от таких программ. Типология крипто-вредоносных программ Крипто-вредоносные программы можно разделить на три категории: вредоносные ПО для крипто-майнинга; крипто-вымогатели; крипто-кражи. Вредоносные ПО для крипто-майнинга Вредоносное ПО для крипто-майнинга — это вредоносное ПО, которое заражает компьютер, чтобы использовать его вычислительную мощность для того, чтобы майнить криптовалюту без авторизации. После заражения компьютера этот тип вредоносных программ может оставаться незамеченным в течение долгого времени, поскольку он предназначен для работы без привлечения внимания. Одним из признаков, указывающих на заражение вредоносным ПО для шифрования, является медленная работа зараженного компьютера. В некоторых крайних случаях вредоносное ПО может полностью блокировать работу зараженного компьютера из-за полного истощения ресурсов этого ПК. Вредоносное ПО для крипто-майнинга может затронуть не только настольные компьютеры, но и ноутбуки, мобильные телефоны и устройства Интернета вещей (IoT). Чтобы проиллюстрировать работу подобного вредоносного ПО, мы кратко обсудим один конкретный тип такого вредоносного ПО, а именно WannaMine. Он использует зараженный компьютер, чтобы генерировать криптовалюту Monero. WannaMine использует хакерский инструмент EternalBlue. Первоначально его разработалоАгентство национальной безопасности США (NSA), но позже послужил основой для различных вредоносных приложений, включая печально известный WannaCry. Криптовалюта, генерируемая через WannaMine, добавляется в цифровой кошелек мошенников. По оценкам, более 500 миллионов пользователей Интернета добывают криптовалюты на своих вычислительных устройствах, не зная об этом. Крипто -вымогатели Крипто-вымогатель — это вредоносная программа для шифрования файлов, которые хранятся на зараженном компьютере, и просит пользователей этого компьютера заплатить выкуп за доступ к зашифрованным файлам. Выкуп, как правило, варьируется от 300 до 500 долларов США и должен быть оплачен в биткойнах или другой криптовалюте. Крипто-вымогатели могут нанести существенный урон мировой экономике. Например, предполагаемые убытки от крипто-вымогателей WannaCry составляют 4 миллиарда долларов США. Около 230 000 компьютеров по всему миру заразились этой программой, включая компьютеры больниц и телекоммуникационных компаний. За два месяца до появления WannaCry Microsoft выпустила исправление безопасности, которое защищало пользователей Microsoft Windows от WannaCry и других вредоносных программ, основанных на эксплойте EternalBlue. Однако, поскольку многие люди и организации не обновили свои операционные системы своевременно, WannaCry удалось заразить большое количество компьютеров. Как только WannaCry заражает компьютер, он шифрует файлы, хранящиеся на этом компьютере, и требует выкуп: от 300 до 600 долларов. Однако большинство жертв, которые заплатили запрошенный выкуп, не расшифровали свои файлы. Некоторые исследователи утверждают, что никому не удалось расшифровать файлы, которые зашифровала WannaCry. Крипто-кража Крипто-кража направлена на тайную кражу криптовалюты у пользователей зараженных компьютеров. Например, хакерская группа Lazarus из Северной Кореи использовала приложение для обмена сообщениями Telegram для распространения вредоносных программ, позволяющих злоумышленникам красть криптовалюты. Такое вредоносное ПО часто разрабатывают хакеры из Северной Кореи, поскольку криптовалюты позволяют северокорейцам уклоняться от экономических санкций, введенных рядом стран и международных организаций. Согласно отчету ООН от 2019 года, Северная Корея получила более 2 миллиардов долларов США в виде криптовалюты путем взлома криптовалютных бирж и других организаций. Топ 5 крипто-вредоносных атак: 1. Retadup Retadup, ПО для крипто-майнинга, должно быть первым в списке, потому что ему удалось заразить и создать ботнет из 850 000 компьютеров. Ботнет, который считался одним из крупнейших в мире, обнаружила и уничтожила французская полиция. 2. Smominru Программное обеспечение для крипто-вымогательства Smominru находится на втором месте, поскольку оно затронуло более 500 000 машин. 3. CryptoLocker Вредоносная программа CryptoLocker получает бронзовую медаль, поскольку она также затронула более 500 000 компьютеров. Однако ущерб, причиненный им, пока неясен. 4. Bayrob Group Вредоносное ПО для крипто-майнинга Bayrob Group, затронувшее более 400 000 компьютеров, занимает четвертое место. Стоит отметить, что два члена преступной группы были экстрадированы из Румынии в США и осуждены за киберпреступность и мошенничество. 5. WannaCry Пятое место занимает WannaCry, крипто-вымогатель, который более подробно обсуждался выше. Заражено 230 000 компьютеров. Как защититься от крипто-вредоносных программ Частные лица и организации, которые хотят защитить себя от крипто-вредоносных программ, должны повышать свою осведомленность в области информационной безопасности посредством образования и обучения. Это связано с тем, что крипто-вредоносные программы обычно распространяются, заманивая компьютерных пользователей открывать вредоносные вложения или нажимать на мошеннические веб-сайты. В дополнение к повышению осведомленности о крипто-вредоносных программах, необходимо регулярно устанавливать обновления программного обеспечения и исправления, чтобы предотвратить использование хакерами таких уязвимостей, как EternalBlue. И последнее, но не менее важное: крайне важно установить надежное решение для защиты от вредоносного ПО, которое выявляет и удаляет его безопасно, быстро и эффективно.
img
Так как технология VoIP базируется на технологии IP и использует Интернет, она так же наследует все её уязвимости. Последствия этих атак, умноженные на уязвимости, которые следуют из особенностей архитектуры сетей VoIP, заставляют задуматься о способах усиления защиты и тщательном анализе существующей сети IP . Более того, добавление любого нового сервиса, например, голосовой почты в недостаточно защищенную инфраструктуру может спровоцировать появление новых уязвимостей. Риски и уязвимости, наследованные из IP сетей. Плохой дизайн сети Неправильно спроектированная сеть может повлечь за собой большое количество проблем, связанных с использованием и обеспечением необходимой степени информационной безопасности в VoIP сетях. Межсетевые экраны, к примеру, являются уязвимым местом в сети, по причине того, что для правильного функционирования VoIP сети необходимо открывать дополнительные порты, и межсетевые экраны, не поддерживающие технологию VoIP, способны просто оставлять открытыми ранее используемые порты даже после завершения вызовов. Уязвимые IP АТС и шлюзы Если злоумышленник получает доступ к шлюзу или АТС, он так же получает доступ к захвату целых сессий (по сути – возможность прослушать вызов), узнать параметры вызова и сети. Таким образом, на безопасность АТС необходимо обратить наибольшее внимание. Убытки от таких вторжений могут достигать значительных сумм. Атаки с повторением пакетов Атака с повторением пакета может быть произведена в VoIP сети путем повторной передачи серии корректных пакетов, с целью того, что бы приёмное устройство произвело повторную обработку информации и передачу ответных пакетов, которые можно проанализировать для подмены пакетов (спуфинга) и получения доступа в сеть. К примеру, даже при условии зашифрованных данных, существует возможность повторения пакета с логином и паролем пользователем пользователя, и, таким образом, получения доступа в сеть. Риски и уязвимости, характерные для VoIP сетей Подмена и маскировка пакетов Использование подменных пакетов с неправильным IP-адресом источника могут использоваться для следующих целей: Перенаправление пакетов в другую сеть или систему Перехват трафика и атака «man-in-the-middle» (рисунок ниже) Маскировка под доверенное устройство - «Перенос ответственности» за атаку на другое устройство Фаззинг(Fuzzing) - Нагрузка системы пакетами с не полностью корректной информацией , что вызывает ошибки в работе системы при их обработке, например такие как задержки при работе, утечки информации и полный отказ системы Сканирование на предмет возможных уязвимостей - Сканирование портов может дать злоумышленнику начальные данные для проведения полноценной атаки, такие как модели операционных систем, типы используемых сервисов и приложений. При нахождении уязвимого сервиса злоумышленник может получить доступ к управлению всей сетью, и, как следствию, к возможности причинить большой ущерб. Низкая надежность по сравнению с традиционными сетям - Для достижения качественной связи, пакетам, содержащим голосовую и видео нагрузку присваивается высокий приоритет в механизмах качества обслуживания QoS (качества обслуживания). Однако, надежность VoIP и сетей передачи данных стремится к 99,9%, что ниже чем степени надежности в традиционных телефонных сетях, у которых данный параметр стремится к 99,999%. Конечно, разница не столь велика, однако за год эта разница выливается в дополнительные 8.7 часа, во время которых система не работает. Но необходимо понимать, что далеко не каждому предприятию это может повредить. Атаки DDoS(Distributed Denial of Service) - Атаки DoS и DDoS происходят когда злоумышленник посылает крайне большие объемы случайных сообщений на одно или несколько VoIP устройств из одного или нескольких мест (DoS и DDoS соответственно). Атака из нескольких мест используется с помощью «зомби» - скомпрометированные сервера и рабочие станции, которые автоматически посылают вредоносные запросы в соответствии с потребностями злоумышленника. Успешной такая атака считается в момент, когда количество запросов превышает вычислительную мощность объекта, в следствие чего происходит отказ в обслуживании для конечных пользователей. VoIP системы особенно уязвимы для таких атак, т.к они имеют высокий приоритет в технологии обеспечения качества обслуживания QoS, и для нарушения их работы требуется меньшее количество трафика нежели для обычных сетей передачи данных. Примером DoS атаки против именно VoIP сети может быть атака при множественной передачи сигналов отмены или установления вызова, которая так же имеет название SIP CANCEL DoS атака. CID спуфинг - Один из типов атак с подменой пакетов построен на манипуляциях с идентификатором звонящего (Caller ID или CID), который используется для идентификации звонящего до ответа. Злоумышленник может подменить этот идентификатор текстовой строкой или телефонным номером и может использоваться для осуществления различных действий, вредящих сети или владельцу предприятия. Кроме того, в VoIP сетях нет возможности скрыть этот идентификатор, т.к телефонные номера включены в заголовках пакетов в протоколе SIP. Это позволяет злоумышленнику со сниффером пакетов, например tcpdump узнать телефонные номера даже если они имеют параметр «private» у сервисного провайдера. Заключение - Использование IP-телефонии приносит огромное количество пользы для любой организации – решение на базе VoIP более масштабируемы, легко интегрируемы и их стоимость ниже классических решений. Однако, любая организация, внедрив VoIP решение должна быть в курсе возможных угроз и предпринимать всевозможные усилия для увеличения степени информационной безопасности в сети. Были перечислены лишь некоторые методы атак, но необходимо понимать, что часто используются комбинации атак и практически ежедневно разрабатываются новые атаки. Но понятно уже сейчас, что за данной технологией будущее и она вряд ли уступит пальму первенства другой технологии в обозримом будущем.
img
Архитектуры х64 и х86 являются одними из наиболее широко используемых типов архитектур системы команд (АСК или ISA – Instruction Set Architecture), созданными Intel и AMD. ISA определяет поведение машинного кода и то, как программное обеспечение управляет процессором. ISA – это аппаратный и программный интерфейс, определяющий, что и как может делать ЦП. Прочитав эту статью, вы узнаете разницу между архитектурами х64 и х86. Что из себя представляет архитектура х86? х86 – это тип ISA для компьютерных процессоров, разработанный Intel в 1978 году. Архитектура х86 основана на микропроцессоре Intel 8086 (отсюда и название) и его модификации 8088. Изначально это была 16-битная система команд для 16-битных процессоров, а позже она выросла до 32-битной системы команд. Количество битов показывает, сколько информации ЦП может обработать за цикл. Так, например, 32-разрядный ЦП передает 32 бита данных за тактовый цикл. Благодаря своей способности работать практически на любом компьютере, от обычных ноутбуков до домашних ПК и серверов, архитектура х86 стала достаточно популярной среди многих производителей микропроцессоров. Наиболее значительным ограничением архитектуры х86 является то, то она может обрабатывать максимум 4096 Мб ОЗУ. Поскольку общее количество поддерживаемых комбинаций равно 232 (4 294 967 295), то 32-разрядный процессор имеет 4,29 миллиарда ячеек памяти. В каждой ячейке хранится 1 байт данных, а в сумме это примерно 4 Гб доступной памяти. На сегодняшний день термин х86 обозначает любой 32-разрядный процессор, способный выполнять систему команд х86. Что из себя представляет архитектура х64? х64 (сокращение от х86-64) – это архитектура системы команд, расширенная до 64-битного кода. В ее основе лежит архитектура х86. Впервые она была выпущена в 2000 году. Она представляла два режима работы – 64-битный режим и режим совместимости, который позволяет пользователям запускать 16-битные и 32-битные приложения. Поскольку вся система команд х86 остается в х64, то старые исполняемые файлы работают практически без потери производительности. Архитектура х64 поддерживает гораздо больший объем виртуальной и физической памяти, чем архитектура х86. Это позволяет приложениям хранить в памяти большие объемы данных. Кроме того, х64 увеличивает количество регистров общего назначения до 16, обеспечивая тем самым дополнительную оптимизацию использования и функциональность. Архитектура х64 может использовать в общей сложности 264 байта, что соответствует 16 миллиардам гигабайт (16 эксабайт) памяти. Гораздо большее использование ресурсов делает эту архитектуру пригодной для обеспечения работы суперкомпьютеров и машин, которым требуется доступ к огромным ресурсам. Архитектура х64 позволяет ЦР обрабатывать 64 бита данных за тактовый цикл, что намного больше, чем может себе позволить архитектура х86. х86 VS х64 Несмотря на то, что оба эти типа архитектуры основаны на 32-битной системе команд, некоторые ключевые отличия позволяют их использовать для разных целей. Основное различие между ними заключается в количестве данных, которые они могут обрабатывать за каждый тактовый цикл, и в ширине регистра процессора. Процессор сохраняет часто используемые данные в регистре для быстрого доступа. 32-разрядный процессор на архитектуре х86 имеет 32-битные регистры, а 64-разрядный процессор – 64-битные регистры. Таким образом, х64 позволяет ЦП хранить больше данных и быстрее к ним обращаться. Ширина регистра также определяет объем памяти, который может использовать компьютер. В таблице ниже продемонстрированы основные различия между системами команд архитектур х86 и х64. ISA х86 х64 Выпущена Выпущена в 1978 году Выпущена в 2000 году Создатель Intel AMD Основа Основана на процессоре Intel 8086 Создана как расширение архитектуры х86 Количество бит 32-битная архитектура 64-битная архитектура Адресное пространство 4 ГБ 16 ЭБ Лимит ОЗУ 4 ГБ (фактически доступно 3,2 ГБ) 16 миллиардов ГБ Скорость Медленная и менее мощная в сравнении с х64 Позволяет быстро обрабатывать большие наборы целых чисел; быстрее, чем х86 Передача данных Поддерживает параллельную передачу только 32 бит через 32-битную шину за один заход Поддерживает параллельную передачу больших фрагментов данных через 64-битную шину данных Хранилище Использует больше регистров для разделения и хранения данных Хранит большие объемы данных с меньшим количеством регистров Поддержка приложения Нет поддержки 64-битных приложений и программ. Поддерживает как 64-битные, так и 32-битные приложения и программы. Поддержка ОС Windows XP, Vista, 7, 8, Linux Windows XP Professional, Windows Vista, Windows 7, Windows 8, Windows 10, Linux, Mac OS   Функции Каждая архитектура системы команд имеет функции, которые ее определяют и дают некоторые преимущества в тех или иных вариантах использования. Следующие списки иллюстрируют функции х64 и х86: х86 Использует сложную архитектуру со сложным набором команд (CISC-архитектуру). Сложные команды требуют выполнения нескольких циклов. х86 имеет больше доступных регистров, но меньше памяти. Разработана с меньшим количеством конвейеров обработки запросов, но может обрабатывать сложные адреса. Производительность системы оптимизируется с помощью аппаратного подхода – х86 использует физические компоненты памяти для компенсации нехватки памяти. Использует программную технологию DEP (Data Execution Prevention – Предотвращение выполнения кода). х64 Имеет возможность обработки 64-битных целых чисел с преемственной совместимость для 32-битных приложений. (Теоретическое) виртуальное адресное пространство составляет 264 (16 эксабайт). Однако на сегодняшний день в реальной практике используется лишь небольшая часть из теоретического диапазона в 16 эксабайт – около 128 ТБ. х64 обрабатывает большие файлы, отображая весь файл в адресное пространство процессора. Быстрее, чем х86, благодаря более быстрой параллельной обработке, 64-битной памяти и шине данных, а также регистрам большего размера. Поддерживает одновременную работу с большими файлами в нескольких адресных пространствах. Кроме того, х64 одновременно эмулирует две задачи х86 и обеспечивает более быструю работу, чем х86. Загружает команды более эффективно. Использует программную технологию DEP (Data Execution Prevention – Предотвращение выполнения кода). Применения Из-за того, что эти две архитектуры имеют различные функции и имеют различия в доступе к ресурсам, скорости и вычислительной мощности, каждая архитектура используется для различных целей: х86 Многие компьютеры по всему миру по-прежнему основаны на операционных системах и процессорах х86. Используется для игровых консолей. Подсистемы облачных вычислений по-прежнему используют архитектуру х86. Старые приложения и программы обычно работают на 32-битной архитектуре. Лучше подходит для эмуляции. 32-битный формат по-прежнему более предпочтителен при производстве аудио из-за возможности совмещения со старой аудиотехникой. х64 Все большее число ПК используют 64-разрядные процессоры и операционные системы на основе архитектуры х64. Все современные мобильные процессоры используют архитектуру х64. Используется для обеспечения работы суперкомпьютеров. Используется в игровых консолях. Технологии виртуализации основаны на архитектуре х64. Она лучше подходит для новых игровых движков, так как она быстрее и обеспечивает лучшую производительность. Ограничения И хотя обе ISA имеют какие-то ограничения, х64 – все же более новый и более совершенный тип архитектуры. Ниже приведен список ограничений для обоих типов архитектур: х86 Имеет ограниченный пул адресуемой памяти. Скорость обработки ниже в сравнении с архитектурой х64. Фирмы-поставщики больше не разрабатывают приложения для 32-битных операционных систем. Для современных процессоров требуется 64-битная ОС. Все устройства в системе (видеокарты, BIOS и т.д.) совместно используют доступную оперативную память, оставляя еще меньше памяти для ОС и приложений. х64 Она не работает на устаревших устройствах. Ее высокая производительность и скорость, как правило, потребляют больше энергии. Маловероятно, что 64-разрядные драйверы будут доступны для старых систем и оборудования. Некоторое 32-разрядное программное обеспечения не полностью совместимо с 64-разрядной архитектурой. Как проверить, на какой архитектуре работает ваш компьютер – х64 или х86? Если вы купили ПК в последние 10-15 лет, то он с большой долей вероятности работает на архитектуре х64. Для того, чтобы проверить, является ли ваш компьютер 32-разрядным или 64-разрядным, выполните следующие действия: Шаг 1: Откройте настройки В Windows 10 нажмите на клавишу Windows и щелкните значок «Settings» («Настройки»). Шаг 2: Откройте параметры системы В меню настроек выберите пункт «System» («Система»). Шаг 3: Найдите характеристики устройства Выберите пункт «About» («О программе») на левой панели и в разделе «Device specifications» («Характеристики устройства») найдите тип системы: В приведенном выше примере система представляет собой 64-разрядную операционную систему с процессором на базе архитектуры х64. Через командную строку это можно сделать быстрее: wmic OS get OSArchitecture Ну а для Linux нужно выполнить команду: uname -m Что лучше – х86 или х64? Несмотря на то, что и у х86, и у х64 есть свои преимущества, будущее не терпит ограничений, а это значит, что х86 практически перестанет использоваться или будет полностью выведена из использования. К тому же, х64 намного быстрее, может выделять больше оперативной памяти и имеет возможности параллельной обработки через 64-битную шину данных. Это делает ее лучшим вариантом при выборе между двумя типами архитектуры. Если стоит выбор, какую ОП установить, то всегда лучше отдать предпочтение в пользу 64-разрядной ОС, поскольку она может запустить как 32-разрядное, так и 64-разрядное программное обеспечение. А вот ОС на базе х86 работает только с 32-разрядным программным обеспечением. В общем и целом, х64 гораздо более эффективна, чем х86, поскольку использует всю установленную оперативную память, предоставляет больше места на жестком диске, имеет более высокую скорости шины и общую лучшую производительность. Заключение Данная статья показала различия между архитектурами системы команд х86 и х64, а также описала их функции, возможные применения и ограничения. Примите во внимание все особенности каждой ISA и сделайте выбор в пользу наиболее вам подходящей.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59