По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
И Linux и BSD-системы бесплатны и с открытым исходным кодом, они являются Unix-подобными системами. Они зачастую даже используют практически одинаковый софт - у них много общего, и не так много различий. Так зачем тогда плодить сущности, другими словами - почему существует и те, и другие? Основы То, что большинство людей называют Линуксом, по сути, не совсем оно. Технически, Linux - это просто ядро Linux, так как типичные дистрибутивы Linux-а являются сборкой из множества кусочков различного софта, поэтому его иногда называют GNU/Linux. Но опять же, множество используемых на нем приложений также используются на BSD. Как мы уже упомянули во введении, Linux и BSD являются Unix-подобными системами, но у них совершенно разное наследие. Linux был написан Линусом Торвальдсом, когда тот был студентом в Финляндии, а BSD расшифровывается как Berkeley Software Distribution, так как изначально это был пакет модификаций Bell Unix, который, в свою очередь, был создан в Калифорнийском Университете в Беркли. В конце концов, эта сборка эволюционировала в полноценную операционную систему, и теперь по миру ходит много разных BSD. Ядро против полноценной ОС Официально, Linux - это просто ядро. Дистрибутивы Линукса должны выполнять работу по сборке всего нужного ПО для создания полноценной операционной системы Линукс для создания того или иного дистрибутива, как например Ubuntu, Mint, Debian, Fedora, Red Hat или Arch - в мире есть огромное количество различных дистрибутивов. А BSD, в свою очередь, это и ядро, и операционная система. К примеру, FreeBSD предоставляет и ядро FreeBSD и операционную систему FreeBSD, и все это добро обслуживается как единый проект. Другими словами, если вам захочется установить FreeBSD, вы просто сможете это сделать. Если же вы захотите установить себе Линукс, то вам вначале придется выбрать конкретный тип дистрибутива (у них есть большое количество тонкостей, различий и специфики между собой). БСД системы иначе работают с софтом - они включают в себя ПО в исходном виде, и компьютер должен компилировать их перед запуском. Но, опять же, приложения также можно устанавливать в привычном виде, так что вам не придется тратить время и ресурсы на компиляцию. Лицензирование Лицензирование отличается у этих систем очень сильно, что для большинства не будет играть значения, а вот для людей, которые как-то на этом зарабатывают - можно и изучить подробнее. Linux использует GNU GPL, она же “Основная Публичная Лицензия”. Если вы модифицируете ядро Линукса и распространяете его, то вы обязаны также опубликовать исходники кода с вашими модификациями. В случае BSD, которые использует BSD лицензию, это совсем не так - вы ничего не обязаны публиковать, только если сами захотите. И BSD, и Linux являются так называемыми “Open-source” системами, то есть имеют свободно распространяемый код, но это у них немного по-разному реализовано. Люди часто спорят, какая из этих лицензий является “более свободной”. GPL лицензия помогает конечным пользователям тем, что они всегда смогут найти исходники (это может помочь разобраться в решении и/или как-то доработать его, но ограничивает разработчиков, так как по сути заставляет их публиковать исходники всего того, что они наваяли в своих чертогах разума. Соответственно, на базе BSD разработчики могут создавать проекты с уже закрытым исходным кодом, для увеличения конечной стоимости и проприетарности. Какие бывают БЗДы Чаще всего воспринимают три основных типа BSD: FreeBSD является самой популярной, целится на высокую производительность и удобство использования. Прекрасно работает на стандартных x86 и x64 процессорах от Intel и AMD; NetBSD предназначена для запуска на чем угодно и поддерживает бесконечное количество разных архитектур. Их лозунг: Конечно, NetBSD работает; OpenBSD сделана для максимальной безопасности, и не только со стороны ее функций, но и со стороны практик по ее внедрению. Она была спроектирована как операционная система для банков и прочих серьезных структур, у которых есть критические информационные инфраструктуры; Есть еще две известные BSD системы: DragonFly BSD была создана с целью использования в мультипоточных средах - к примеру, в кластерах, содержащих в себе большое количество компьютеров; Mac OS X (вряд ли найдется человек, который не слышал это название) по факту базируется на ОС под названием Darwin, которая в свою очередь базируются на BSD. Она отличается от себе подобных систем: низкоуровневое ядро и прочее ПО является опенсорсным BSD кодом, бОльшая часть операционной системы это закрытый Mac OS код. Apple построила Mac OS и IOS на BSD, чтобы избавиться от необходимости писать низкоуровневую операционную систему, также как Google построила Android на базе Linux; Зачем выбирать BSD вместо Linux? Linux все еще гораздо популярнее той же FreeBSD. Как один из примеров, он начинает поддерживать новое железо раньше. По сути, они во многом обратно совместимы и многое ПО работает одинаково. Если вам уже посчастливилось использовать Linux, то FreeBSD не будет ощущаться чем-то иным. Установите FreeBSD как десктопную ОС и вы будете использовать тот же Gnome или KDE, который вы использовали на Linux. Однако, FreeBSD не установит графическую оболочку автоматически, так что вам самим придется этим заниматься, то есть система является более «олдскульной» в том или ином смысле. Иногда, FreeBSD может являться предпочтительной ОС на некоторых операционных системах за стабильность и надежность, а некоторые производители устройств могут выбирать BSD из-за отсутствия необходимости публиковать исходный код. Если вы обычный пользователь десктопа, вам точно будет проще использовать Linux - так как такие операционные системы как Ubuntu или Mint гораздо дружелюбнее к конечному пользователю.
img
Почитайте предыдущую статью про криптографический обмен ключами. Предположим, вы хотите отправить большой текстовый файл или даже изображение, и позволить получателям подтвердить, что он исходит именно от вас. Что делать, если рассматриваемые данные очень большие? Или что, если данные нужно сжать для эффективной передачи? Существует естественный конфликт между криптографическими алгоритмами и сжатием. Криптографические алгоритмы пытаются произвести максимально случайный вывод, а алгоритмы сжатия пытаются воспользоваться преимуществом неслучайности данных для сжатия данных до меньшего размера. Или, возможно, вы хотите, чтобы информация была прочитана кем-либо, кто хочет ее прочитать, что означает, что не нужно ее шифровать, но вы хотите, чтобы получатели могли проверить, что вы ее передали. Криптографические хэши предназначены для решения этих проблем. Возможно, вы уже заметили по крайней мере одно сходство между идеей хеширования и криптографического алгоритма. В частности, хэш предназначен для получения очень большого фрагмента данных и создания представления фиксированной длины, поэтому на выходе для широкого диапазона входных данных очень мало конфликтов. Это очень похоже на концепцию максимально близкого к случайному выходу для любого ввода, необходимого для криптографического алгоритма. Еще одно сходство, о котором стоит упомянуть, заключается в том, что хэш-алгоритмы и криптографические алгоритмы работают лучше с очень редко заполненным входным пространством. Криптографический хеш просто заменяет обычную хеш-функцию криптографической функцией. В этом случае хэш может быть вычислен и отправлен вместе с данными. Криптографические хэши могут использоваться либо с системами с симметричными ключами, либо с системами с открытым ключом, но обычно они используются с системами с открытым ключом. Сокрытие информации о пользователе Возвращаясь к начальным статьям, еще одна проблема безопасности - это исчерпание данных. В случае отдельных пользователей исчерпание данных можно использовать для отслеживания того, что пользователи делают, пока они находятся в сети (а не только для процессов). Например: Если вы всегда носите с собой сотовый телефон, можно отслеживать перемещение Media Access Control (MAC), когда он перемещается между точками беспроводного подключения, чтобы отслеживать ваши физические перемещения. Поскольку большинство потоков данных не симметричны - данные проходят через большие пакеты, а подтверждения передаются через небольшие пакеты, наблюдатель может обнаружить, когда вы выгружаете и скачиваете данные, и, возможно, даже когда вы выполняете небольшие транзакции. В сочетании с целевым сервером эта информация может дать хорошую информацию о вашем поведении как пользователя в конкретной ситуации или с течением времени. Этот и многие другие виды анализа трафика могут выполняться даже для зашифрованного трафика. Когда вы переходите с веб-сайта на веб-сайт, наблюдатель может отслеживать, сколько времени вы тратите на каждый из них, что вы нажимаете, как вы перешли на следующий сайт, что вы искали, какие сайты вы открываете в любое время и т. д. информация может многое рассказать о вас как о личности, о том, чего вы пытаетесь достичь, и о других личных факторах. Рандомизация MAC-адресов Institute of Electrical and Electronic Engineers (IEEE) первоначально разработал адресное пространство MAC-48 для назначения производителями сетевых интерфейсов. Эти адреса затем будут использоваться "как есть" производителями сетевого оборудования, поэтому каждая часть оборудования будет иметь фиксированный, неизменный аппаратный адрес. Этот процесс был разработан задолго до того, как сотовые телефоны появились на горизонте, и до того, как конфиденциальность стала проблемой. В современном мире это означает, что за одним устройством можно следить независимо от того, где оно подключено к сети. Многие пользователи считают это неприемлемым, особенно потому, что не только провайдер может отслеживать эту информацию, но и любой, кто имеет возможность прослушивать беспроводной сигнал. Один из способов решить эту проблему-позволить устройству регулярно менять свой MAC-адрес, даже, возможно, используя другой MAC-адрес в каждом пакете. Поскольку сторонний пользователь (прослушиватель) вне сети провайдера не может "угадать" следующий MAC-адрес, который будет использоваться любым устройством, он не может отслеживать конкретное устройство. Устройство, использующее рандомизацию MAC-адресов, также будет использовать другой MAC-адрес в каждой сети, к которой оно присоединяется, поэтому оно не будет отслеживаться в нескольких сетях. Существуют атаки на рандомизацию MAC-адресов, в основном сосредоточенные вокруг аутентификации пользователя для использования сети. Большинство систем аутентификации полагаются на MAC-адрес, поскольку он запрограммирован в устройстве, чтобы идентифицировать устройство и, в свою очередь, пользователя. Как только MAC-адрес больше не является неизменным идентификатором, должно быть какое-то другое решение. Места, где рандомизация MAC-адресов может быть атакована, - это Время (timing): если устройство собирается изменить свой MAC-адрес, оно должно каким-то образом сообщить другому абоненту беспроводного соединения об этих изменениях, чтобы канал между подключенным устройством и базовой станцией мог оставаться жизнеспособным. Должна быть какая-то согласованная система синхронизации, чтобы изменяющийся MAC-адрес мог продолжать обмен данными при изменении. Если злоумышленник может определить, когда произойдет это изменение, он сможет посмотреть в нужное время и обнаружить новый MAC-адрес, который принимает устройство. Порядковые номера (Sequence numbers): как и во всех транспортных системах, должен быть какой-то способ определить, все ли пакеты были получены или отброшены. Злоумышленник может отслеживать порядковые номера, используемые для отслеживания доставки и подтверждения пакетов. В сочетании с только что отмеченной атакой по времени это может обеспечить довольно точную идентификацию конкретного устройства при изменении MAC-адреса. Отпечатки информационных элементов (Information element fingerprints): каждое мобильное устройство имеет набор поддерживаемых функций, таких как установленные браузеры, расширения, приложения и дополнительное оборудование. Поскольку каждый пользователь уникален, набор приложений, которые он использует, также, вероятно, будет довольно уникальным, создавая "отпечаток" возможностей, которые будут сообщаться через информационный элемент в ответ на зонды от базовой станции. Отпечатки идентификатора набора услуг (SSID): каждое устройство хранит список сетей, к которым оно может подключиться в настоящее время, и (потенциально) сетей, которые оно могло достичь в какой-то момент в прошлом. Этот список, вероятно, будет довольно уникальным и, следовательно, может выступать в качестве идентификатора устройства. Хотя каждый из этих элементов может обеспечить определенный уровень уникальности на уровне устройства, комбинация этих элементов может быть очень близка к идентификации конкретного устройства достаточно часто, чтобы быть практически полезной при отслеживании любого конкретного пользователя, подключающегося к беспроводной сети. Это не означает, что рандомизация MAC-адресов бесполезна, это скорее один шаг в сохранении конфиденциальности пользователя при подключении к беспроводной сети. Луковая маршрутизация Луковая маршрутизация - это механизм, используемый для маскировки пути, а также шифрования пользовательского трафика, проходящего через сеть. Рисунок 1 используется для демонстрации. На рисунке 1 хост А хочет безопасно отправить некоторый трафик на K, чтобы ни один другой узел в сети не мог видеть соединение между хостом и сервером, и чтобы ни один злоумышленник не мог видеть открытый текст. Чтобы выполнить это с помощью луковой маршрутизации, A выполняет следующие действия: Он использует службу для поиска набора узлов, которые могут соединяться между собой, и предоставления пути к серверу K. Предположим, что этот набор узлов включает [B, D, G], хотя на рисунке они показаны как маршрутизаторы, скорее всего, это программные маршрутизаторы, работающие на хостах, а не выделенные сетевые устройства. Хост A сначала найдет открытый ключ B и использует эту информацию для создания сеанса с шифрованием с симметричным ключом B. Как только этот сеанс установлен, A затем найдет открытый ключ D и использует эту информацию для обмена набором симметричных ключей с D, наконец, построит сеанс с D, используя этот симметричный секретный ключ для шифрования защищенного канала. Важно отметить, что с точки зрения D, это сеанс с B, а не с A. Хост A просто инструктирует B выполнить эти действия от его имени, а не выполнять их напрямую. Это означает, что D не знает, что A является отправителем трафика, он знает только, что трафик исходит от B и передается оттуда по зашифрованному каналу. Как только этот сеанс будет установлен, A затем проинструктирует D настроить сеанс с G таким же образом, как он проинструктировал B настроить сеанс с D. D теперь знает, что пункт назначения-G, но не знает, куда будет направлен трафик G. У хоста A теперь есть безопасный путь к K со следующими свойствами: Трафик между каждой парой узлов на пути шифруется с помощью другого симметричного закрытого ключа. Злоумышленник, который разрывает соединение между одной парой узлов на пути, по-прежнему не может наблюдать трафик, передаваемый между узлами в другом месте на пути. Выходной узел, которым является G, знает пункт назначения, но не знает источник трафика. Входной узел, которым является B, знает источник трафика, но не пункт назначения. В такой сети только А знает полный путь между собой и местом назначения. Промежуточные узлы даже не знают, сколько узлов находится в пути-они знают о предыдущем и следующем узлах. Основная форма атаки на такую систему состоит в том, чтобы захватить как можно больше выходных узлов, чтобы вы могли наблюдать трафик, выходящий из всей сети, и соотносить его обратно в полный поток информации. Атака "Человек посередине" (Man-in-the-Middle) Любой вид безопасности должен не только изучать, как вы можете защитить информацию, но также учитывать различные способы, которыми вы можете вызвать сбой защиты данных. Поскольку ни одна система не является идеальной, всегда найдется способ успешно атаковать систему. Если вам известны виды атак, которые могут быть успешно запущены против системы безопасной передачи данных, вы можете попытаться спроектировать сеть и среду таким образом, чтобы предотвратить использование этих атак. Атаки "человек посередине" (MitM) достаточно распространены, и их стоит рассмотреть более подробно. Рисунок 2 демонстрирует это. Рисунок 2-б аналогичен рисунку 2-а с одним дополнением: между хостом A и сервером C расположен хост B, который хочет начать зашифрованный сеанс. Некоторыми способами, либо подменяя IP-адрес C, либо изменяя записи службы доменных имен (DNS), чтобы имя C преобразовывалось в адрес B, или, возможно, даже изменяя систему маршрутизации, чтобы трафик, который должен быть доставлен в C, вместо этого доставлялся в B, злоумышленник заставил B принять трафик, исходящий из A и предназначенный для C. На рисунке 2-б: Хост A отправляет полуслучайное число, называемое одноразовым номером, в C. Эту информацию получает B. Хост B, который злоумышленник использует в качестве MitM, передает этот одноразовый номер на узел C таким образом, что создается впечатление, что пакет действительно исходит от узла A. В этот момент злоумышленник знает одноразовый идентификатор, зашифрованный A. Злоумышленник не знает закрытый ключ A, но имеет доступ ко всему, что A отправляет зашифрованным с помощью закрытого ключа A. Сервер C также отправляет ответ с зашифрованным одноразовым случайным числом. B получает это и записывает. Хост B передает одноразовое случайное число, полученное от C, на A. Хост A по-прежнему будет считать, что этот пакет пришел непосредственно от C. Хост B вычисляет закрытый ключ с помощью A, как если бы это был C. Хост B вычисляет закрытый ключ с помощью C, как если бы это был A. Любой трафик, который A отправляет в C, будет получен B, что: Расшифруйте данные, которые A передал, используя закрытый ключ, вычисленный на шаге 5 на рисунке 2-б. Зашифруйте данные, которые A передал, используя закрытый ключ, вычисленный на шаге 6 на рисунке 2-б, и передайте их C. Во время этого процесса злоумышленник на B имеет доступ ко всему потоку в виде открытого текста между A и C. Ни A, ни C не осознают, что они оба построили зашифрованный сеанс с B, а не друг с другом. Такого рода атаки MitM очень сложно предотвратить и обнаружить.
img
Когда синхронизация менее важна, чем фактическая доставка, трафиком часто можно управлять с помощью метода взвешенной справедливой организации очереди на основе классов (CBWFQ). В CBWFQ участвующие классы трафика обслуживаются в соответствии с назначенной им политикой. Например, трафику, помеченному как AF41, может быть гарантирована минимальная пропускная способность. Для трафика, помеченного как AF21, также может быть гарантирована минимальная пропускная способность, возможно, меньшая, чем объем, предоставленный трафику AF41. Немаркированный трафик может получить любую оставшуюся полосу пропускания. CBWFQ имеет понятие справедливости, когда различные классы трафика могут доставляться по перегруженному каналу. CBWFQ обеспечивает справедливое обслуживание пакетов в очереди в соответствии с политикой QoS. Пакеты будут отправляться всем классам трафика с назначенной им полосой пропускания. Например, предположим, что пропускная способность канала составляет 1024 Кбит / с. Для класса трафика AF41 гарантирован минимум 256 Кбит / с. Для класса AF31 гарантирована скорость минимум 128 Кбит / с. Для класса AF21 гарантирована скорость минимум 128 Кбит / с. Это дает нам соотношение 2: 1: 1 между этими тремя классами. Остальные 512 Кбит / с не распределены, то есть доступны для использования другим трафиком. Включая нераспределенную сумму, полное соотношение составляет 256: 128: 128: 512, что сокращается до 2: 1: 1: 4. Чтобы решить, какой пакет будет отправлен следующим, очередь обслуживается в соответствии с политикой CBWFQ. В этом примере пропускная способность 1024 Кбит / с делится на четыре части с соотношением 2: 1: 1: 4. Для простоты предположим, что перегруженный интерфейс будет обслуживать пакеты в очереди за восемь тактов: Тактовый цикл 1. Будет отправлен пакет AF41. Тактовый цикл 2. Будет отправлен еще один пакет AF41. Тактовый цикл 3. Будет отправлен пакет AF31. Тактовый цикл 4. Будет отправлен пакет AF21. Тактовые циклы 5-8. Пакеты с другими классификациями, а также неклассифицированные пакеты будут отправлены. В этом примере предполагается, что есть пакеты, представляющие каждый из четырех классов, находящихся в буфере, поставленных в очередь для отправки. Однако не всегда все бывает так однозначно. Что происходит, когда нет пакетов из определенного класса трафика для отправки, даже если есть место в гарантированном выделении минимальной полосы пропускания? Гарантированная минимальная пропускная способность не является резервированием. Если класс трафика, которому назначен гарантированный минимум, не требует полного распределения, другие классы трафика могут использовать полосу пропускания. Также нет жестких ограничений гарантированного минимума пропускной способности. Если объем трафика для определенного класса превышает гарантированный минимум и полоса пропускания доступна, трафик для класса будет проходить с большей скоростью. Таким образом, происходящее могло бы выглядеть примерно так: Тактовый цикл 1. Отправляется пакет AF41. Тактовый цикл 2. Нет пакета AF41 для отправки, поэтому вместо него отправляется пакет AF31. Тактовый цикл 3. Отправлен еще один пакет AF31. Тактовый цикл 4. Нет пакета AF21 для отправки, поэтому отправляется неклассифицированный пакет. Тактовые циклы 5-7. Отправляются пакеты с другими классификациями, а также неклассифицированные пакеты. Тактовый цикл 8. Нет более классифицированных или неклассифицированных пакетов для отправки, поэтому отправляется еще один пакет AF31. В результате неиспользованная полоса пропускания делится между классами с избыточным трафиком. Перегрузка CBWFQ не увеличивает пропускную способность перегруженного канала. Скорее, алгоритм предусматривает тщательно контролируемое совместное использование перенапряженного канала, отражающее относительную важность различных классов трафика. В результате совместного использования CBWFQ трафик доставляется через перегруженный канал, но с меньшей скоростью по сравнению с тем же каналом в незагруженное время. Невозможно переоценить различие между "совместным использованием перегруженного канала" и "созданием полосы пропускания из ничего". Распространенное заблуждение о QoS заключается в том, что, несмотря на точки перегрузки на сетевом пути, взаимодействие с пользователем останется идентичным. Это совсем не так. Инструменты QoS, такие как CBWFQ, по большей части предназначены для того, чтобы максимально использовать плохую ситуацию. При выборе того, когда и когда пересылать трафик, QoS также выбирает, какой трафик отбрасывать. Среди потоков, передаваемых по сети, есть "победители" и "проигравшие". LLQ является заметным исключением, поскольку предполагается, что трафик, обслуживаемый LLQ, настолько критичен, что он будет обслуживаться, исключая другой трафик, вплоть до назначенного ограничения полосы пропускания. LLQ стремится сохранить пользовательский опыт. Другие инструменты управления перегрузкой QoS Формирование трафика - это способ изящно ограничить классы трафика определенной скоростью. Например, трафик, помеченный как AF21, может иметь скорость 512 Кбит / с. Формирование изящное. Он допускает номинальные всплески выше определенного предела перед отбрасыванием пакетов. Это позволяет TCP более легко настраиваться на требуемую скорость. Когда пропускная способность сформированного класса трафика отображается на графике, результат показывает нарастание до предельной скорости, а затем постоянную скорость передачи на протяжении всего потока. Формирование трафика чаще всего применяется к классам трафика, заполненным слоновьими потоками. Слоновидные потоки - это долговечные потоки трафика, используемые для максимально быстрого перемещения больших объемов данных между двумя конечными точками. Слоновые потоки могут заполнять узкие места в сети собственным трафиком, подавляя меньшие потоки. Распространенная стратегия QoS состоит в том, чтобы формировать скорость трафика слоновьих потоков, чтобы в узком месте оставалась достаточная пропускная способность для эффективного обслуживания других классов трафика. Применение политик аналогично формированию трафика, но более жестко обращается с избыточным (несоответствующим) трафиком. Вместо того, чтобы допускать небольшой всплеск выше определенного предела пропускной способности, как при формировании перед сбросом, применение политик немедленно отбрасывает избыточный трафик. При столкновении с ограничителем трафика затронутый трафик увеличивается до предела пропускной способности, превышает его и отбрасывается. Такое поведение отбрасывания заставляет TCP заново запускать процесс наращивания мощности. Полученный график выглядит как пилообразный. Применение политик может использоваться для выполнения других задач, таких как перемаркировка несоответствующего трафика на значение DSCP с более низким приоритетом, а не отбрасывание.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59