По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Данная статья посвящена монтированию и демонтированию файловых систем в Linux. Под этим понятием понимается подключение разделов жестких дисков, различных носителей и прочих файловых систем, которые могут находится на различных носителях информации. Получение к ним доступа, отключение автоматически и в ручном режиме. В статье будут рассмотрены следующие вопросы: Подключение и отключение файловых систем вручную. Управление автоматическим монтированием файловых систем. Подключение съемных носителей информации. Основные команды, которые позволяют решать вопросы указанные выше: mount устройство точка_монтирования umount устройство или umount точка_монтирования. /etc/fstab: устройство точка монтирования тип файловой системы параметры dump pass Данный файл – это файл настройки автоматического подключения файловых систем. Точкой монтирования, является пустой каталог на нашей файловой системе. К виртуальной машине подключен диск, определяемый операционной системой /dev/sdc, а на нем создан раздел /dev/sdc1 с файловой системой ext4. Мы можем посмотреть, что на нем ls –l /dev/sdc1. Для того, чтобы посмотреть, что есть на этом диске необходимо создать точку монтирования. Для этой цели подойдет любая папка. Если мы посмотрим корневые папки командой ls /, то увидим следующую картину. Правилом хорошего тона является монтирование файловых систем в папки mnt и media. Обычно папку mnt используют для монтирования разделов, а папку media для монтирования съемных носителей информации. Т.е папка mnt пустая и туда у нас ничего не монтируется, можно создать внутри папку mkdir /mnt/hard. Теперь мы можем смонтировать в данную папку наш жесткий диск, подключенный к виртуальной машине. Монтирование осуществляется следующим образом mount /dev/sdc1 /mnt/hard или mount –t ext4 /dev/sdc1 /mnt/hard. Linux очень хорошо самостоятельно определяет тип файловой системы и в написании команд можно данную опцию опустить. Как мы видим все смонтировалось и так как файловая система журналируемая появилась папочка lost+found. Вообще в линуксе вся файловая система –это такое иерархическое дерево с файлами и папками, подпапками. Все эти файлы и папки вообще могут находится на разных устройствах, в том числе и на сетевых устройствах. Это может быть даже сетевая папка, подключенная к нашей системе. Мы подключили /dev/sdc1 в папку /mnt/hard. Мы можем выполнить команду mount, которая покажет нам, что и куда смонтированно. Мы видим все файловые системы смонтированные. В том числе только, что примонтированный жесткий диск. Так же мы можем увидеть виртуальные файловые системы, типа proc. Виртуальная файловая система proc содержит все запущенные процессы и смонтирована в папку /proc. Как мы видим из скриншота их достаточно много. Помимо тех файловых систем, которые созданы на носителях, примонтированно много виртуальных файловых систем. Можно увидеть, что они смонтированы в разные папки согласно их предназначению. Отмонтировать можно командой umount /dev/sdc1. Следовательно мы можем увидеть ls /mnt/hard, что папка пустая. Иногда при выполнении команды на отмонтирование система ругается, это происходит если мы данную файловую систему, каким-нибудь образом используем, например, если открыт файл с данной папки или подпапки. Следовательно, необходимо завершить все операции, после этого система нам даст отмонтировать. Чтобы вот так вручную не подключать или не отключать разделы, есть файлик /etc/fstab. В нем находятся настройки автоматического монтирования файловых систем. Если в данном файлике не сделать запись, то после перезагрузки система не подключит подмонтированную файловую систему, автоматически. Что касается настройки: в файле мы указываем устройство с файловой системой, затем точку монтирования, тип файловой системы, опции и пара настроек. Dump – говорит нам о том, сохранять ли файлы автоматом на данной файловой системе при отключении системы. Т.е если у нас пропало питание или идет завершение работы. Принимаемые значения 1 - файлики будут сохранятся, 0 не будет сохранятся. Параметр Pass указывает порядок проверки файловых систем. Обычно 1 у корневой файловой системы, у всех последующих 2, у съемных носителей 0. Операционная система Linux обычно позволяет смонтировать файловую систему по UUID. Т.е устройство можно указывать не только в явном виде, но и по метке, и по идентификатору. Указывать по идентификатору надежнее мы можем переименовать устройство или переставить жесткие диски и тогда загрузочный раздел окажется не /dev/sda1, а например /dev/sdc1. Чтобы подобного не произошло, лучше файловые системы прописывать с помощью идентификатора. Потому, что идентификаторы прописаны жестко к каждому разделу и изменить мы их не можем. И это будет более стабильная работа. В нашем же случае мы видим, что основной раздел смонтирован. Имеет файловую систему ext4 . Про опции монтирования можно прочитать в мануале к файлу fstab. Ну и как можно увидеть примонтирован еще один раздел без точки монтирования – это раздел подкачки swap. Можно еще одну интересную вещь заметить, при попытке нового монтирования файловой системы от обычного пользователя операционная система ругнется, что только пользователь root может это сделать, но как только мы пропишем данное монтирование в файл /etc/fstab и скажем, что пользователь обычный имеет право монтировать данную файловую систему, то система совершенно спокойно даст примонтировать без повышения привилегий. Соответственно редактировать данный файл совершенно просто. Открываем его любым редактором в режиме суперпользователя и добавляем данные по монтируемой файловой системе. Если при монтировании вы не знаете какой тип файловой системы, можно просто указать auto и операционная система автоматически ее определит тип файловой системы при монтировании. Далее интересная вещь – это опции при монтировании можно указать defaults (чтение (ro), запись (rw), выполнение (execute), nouser). Параметр user- т.е любой пользователь может монтировать и демонтировать данную файловую систему, если данные параметр не указать, тогда только суперпользователь сможет выполнять данные действия. Параметр auto – т.е данный параметр будет автоматически подключать данную файловую систему при старте компьютера или сервера. Параметр noexec - данный параметр запрещает запуск исполняемых файлов на данной файловой системе. После добавления записи в файл /etc/fstab , мы можем примонтировать файловую систему командой от обычного пользователя mount /mnt/hard. Система обратится к файлу /etc/fstab проверит запись и опции, если есть указанная точка монтирования и в опциях запись user система успешно подмонтирует файловую систему. Аналогично можно провести обратную операцию размонтирования unmount /mnt/hard. Есть хорошая команда, которой приходится пользоваться, особенно если создаем raid массивы – это blkid. Данная команда позволяет посмотреть блочные устройства. Работает от суперпользователя sudo blkid /dev/sdc1. Команда показывает, какой uuid имеется у устройства. И мы можем в файле /etc/fstab, можем указать не имя устройства, а UUID = a783a365-3758-47bd-9f2d-1f5b4155f4ca. И это будет надежнее указание UUID, чем имена дисков, потому что имена дисков могут меняться. Раньше в файле /etc/fstab так же прописывалось монтирование съемных носителей USB флешки, CD-ROM и т.д создавалась запись для файловой системы с правами read-only и что при необходимости смонтировать могут любые пользователи, автоматически флопик и CD-ROM не монтировались. Современные дистрибутивы, включаю Ubuntu последних версий, в том числе пользовательские, с красивыми оболочками Gnome и KDE есть файловый менеджер Nautilus. У данного файлового менеджера есть свои настройки, которые позволяют автоматически монтировать, все что мы подключаем. В случае если мы работаем на серверной операционной системе, например, Ubuntu или CentOS, то понятно в дефолтной конфигурации у нас нету авто монтирования и прочих радостей десктопной версии. Поэтому делаем простую вещь. Вставляем носитель с файловой системой, второй шаг blkid находим наше устройство и третий шаг монтируем, командой mount. Правилом хорошего тона является монтирование всех устройств в папку /media. Здесь обычно располагаются папки cdrom, можно создать папки floppy или usb. И последний нюанс, после того, как вы поработали с флешкой и от монтировали, необходимо корректно ее вытащить. Даем команду eject.
img
Суть работы специалиста по информационной безопасности – предотвращение кибератак. Для этого повышается стоимость затрат на проведение атаки. Зачем это нужно? Это необходимо чтобы стоимость предполагаемой атаки была в разы меньше больше чем прибыть, по данной причине проводить ее злоумышленнику будет просто невыгодно. Для усложнения кибератак используются такой комплекс мер: обучение персонала правилам работы: не скачивать непонятные файлы с непонятных сайтов, не открывать странные ссылки на почте, не разглашать данные о системе работы, сохранять всю корпоративную информацию в тайне. Конечно же куда без антивируса! Многие ошибочно полагают что антивирус только нагружает компьютер и от него нет никакой пользы. Даже самый просто бесплатный антивирус сможет защитить вас от 99 процентов всех вредоносных программ. В прошлом компании не особо волновались за безопасность и выделяли на нее очень мало времени. Парой и вовсе доходило до того, что собственники фирм говорят о том, что они не нужны хакерам так как их незачем взламывать. В теперешнем времени все кардинально изменилось, особенно сразу после событий 2015 года. Теперь компании обязали использовать необходимые средства защиты от кибератак, кроме того их обязали находить и исправлять уязвимости в системе. Именно по этой причине данное направление стало активно развивается и у специалистов ИБ стало больше работы. Иногда случается так, что у сотрудников той или иной компании нахватает навыков, компетенции или же полномочий для устранения проблем и ошибок. Если такое происходит, привлекают сторонние организации, которые смогут предоставить необходимый уровень защиты сети. В самом простом случае специалисту по ИБ покупают программу, с помощью которой он сможет найти ошибки после чего устранить их. Но так работают только те «специалисты», которые не понимают, как проводится сканирование и слепо следуют предлагаемым инструкциям. В небольших компаниях за ИБ отвечают один или два человека, которые выделяют на свою основную работу по 3-4 часа в неделю. Также в больших корпорациях под данные задачи могут выделить целое подразделение специалистов, у которых гораздо больше возможностей, навыков и компетенции. Любой специалист по ИБ сам должен быть немного хакером, а именно понимать принцип работы этичного хакинга и выполнять их, для того чтобы понимать, как действует и рассуждает злоумышленник. В ином случае действия специалиста можно расценивать как противозаконные. Для избегания таких оплошностей необходимо четко обговорить с работодателем область допустимых действий, после чего подписать договор, в котором они будут указаны. Что же имеется ввиду, когда говорят неэтичный хакинг? Неэтичный хакинг включает в себя распространение информации добытой незаконным путем, уязвимостей, устройства системы и структуры ее защиты. То есть специалист по ИБ не должен обсуждать совою работу вовремя дружеских посиделок, ибо тем самым он нарушает закон. Очень часто такие вопросы задают на собеседованиях. Это делают, для того чтобы проверить человека на, то сольет ли он информацию своему следующему работодателю. Каждый специалист по ИБ должен понимать к чему могут привести его действия.
img
Ansible один из двух (наряду с SaltStack) наиболее популярных программных комплексов третьей волны, которые позволяют удалённо управлять конфигурациями. Тем не менее, в сегменте сетевого оборудования лидирует наш сегодняшний герой (если о ПО можно так сказать). В первую очередь это вызвано тем, что Ansible не поставит перед пользователем задачи устанавливать агент на хостинги, требующие от него управления. Тем паче ежели Ваш аппарат взаимодействует с ними через CLI, то Ansible это то, что доктор прописал. Одним выстрелом три "электронных зайца" Вообще, прежде чем знакомить уважаемых читателей со сценарием работы в данном программном комплексе, позвольте перечислить несколько его достоинств: Ansible позволяет параллельно подключать по SSH к устройствам (пользователь может сам определить их число). Ansible может передавать задачи на подключённые машины. Ansible способен разбивать машины, входящих в систему, на подгруппы и передавать специальных задачи для каждой подгруппы. Конечно, указаны не все достоинства Ansible. Просто в данных 3 пунктах, как мне кажется, отражена основная суть работы в данной среде. Выполняя эти три задачи, система автоматически освобождает Вас от головной боли по делегированию задач и функций в компании. Время деньги, как говорится. Сценарии Ну и переходим к основному блюду нашего материала - сценариям (playbook). Они состоят из двух частей набора команд для выполнения (play) и конкретных команд (task). Они выполняются друг за другом. Все записи данных осуществляются с помощью YAMLа. К несомненным плюсам его использования следует отнести то, что он гораздо лучше воспринимается людьми, нежели тот же самый JSON. Ежели Вы больше привыкли Вы к Python, то тут у Вас не возникнет проблем с адаптацией, так как синтаксис у них схожий. А вот так происходит процесс написания сценария (комментарии даны построчно к выводу): Имя сценария обязательный элемент для любого сценария; Сценарий применяется к машинам в подгруппе cisco-routers; Выключение режима сбора событий в конкретной машине (если не выключить данный режим, то система потратит много времени на решение ненужных задач); В разделе task указывается список команд для каждого конкретного случая; После чего происходит выполнение команды: PLAY [Run show commands on routers] *************************************************** TASK [run sh ip int br] *************************************************************** changed: [192.168.100.1] changed: [192.168.100.3] changed: [192.168.100.2] TASK [run sh ip route] **************************************************************** changed: [192.168.100.1] changed: [192.168.100.3] changed: [192.168.100.2] PLAY [Run show commands on switches] ************************************************** TASK [run sh int status] ************************************************************** changed: [192.168.100.100] TASK [run sh vlans] ******************************************************************* changed: [192.168.100.100] PLAY RECAP **************************************************************************** 192.168.100.1 : ok=2 changed=2 unreachable=0 failed=0 192.168.100.100 : ok=2 changed=2 unreachable=0 failed=0 192.168.100.2 : ok=2 changed=2 unreachable=0 failed=0 192.168.100.3 : ok=2 changed=2 unreachable=0 failed=0 И запускаем проверку выполнения команд: SSH password: PLAY [Run show commands on routers] *************************************************** TASK [run s hip int br] *************************************************************** Changed: [192.168.100.1] => {“changed”: true, “rc”: 0, “stderr”: “Shared connection To 192.168.100.1 closed. ”, “stdout”: “ Interface IP-Address OK? Method Status Protocol Ethernet0/0 192. 168.100.1 YES NVRAM up up Ethernet0/1 192.168.200.1 YES NVRAM up up Loopback0 10.1.1.1 YES manual up up ”, “stdout_lines “: [“”, “Interface IP-Address OK? Method Status Protocol”, “Ethernet0/0 192.168.100.1 YES NVRAM up up “, “Ethernet0/1 192.168.200.1 YES NVRAM up up “, “Loopaback0 10.1.1.1 YES manual up up “]} А что внутри? А теперь поговорим о начинке сценария. Основу составляют переменные. Это могут быть данные о машине, выводы команд, а также их можно вводить вручную. Главное не забывать правила написания имён. Их всего два: имена всегда должны состоять из букв, цифр и нижнего подчёркивания; имена всегда должны начинаться с буквы. Переменные могут быть определены разными способами: Инвентарным файлом [cisco-routers] 192.168.100.1 192.168.100.2 192.168.100.3 [cisco-switches] 192.168.100.100 [cisco-routers:vars] ntp_server=192.168.255.100 log_server=10.255.100.1 PLAYBOOKом -name: Run show commands on router: hosts: cisco-routers gather_facts: false vars: ntp_server: 192.168.255.100 log_server: 10.255.100.1 tasks: -name: run sh ip int br raw: s hip int br | ex unass -name: run s hip route raw: sh ip route Специальными файлами, созданными для групп: [cisco-routers] 192.168.100.1 192.168.100.2 192.168.100.3 [cisco-switches] 192.168.100.100 Или группами каталогов |– group_vars _ | |– all.yml | | |–cisco-routers.yml | Каталог с переменными для групп устройств | |–cisco-switches.yml _| | |–host vars _ | |–192.168.100.1 | | |–192.168.100.2 | | |–192.168.100.3 | Каталог с переменными для устройств | |–192.168.100.100 _| | |–myhosts | Инвертарный файл Команда register позволяет сохранять результаты выполнений модулей в переменные. После чего переменная может быть использована в шаблонах, принятиях решений о выполнении заданного сценария. --- - name: Run show commands on routers hosts: cisco-routers gather_facts: false tasks: -name: run s hip int br raw: s hip int br | ex unass register: sh_ip_int_br_result --- debug отображает информацию в стандартном потоке вывода в виде произвольной строки, переменной или фактах о машине. --- - name: Run show commands on routers hosts: cisco-routers gather_facts: false tasks: -name: run s hip int br raw: sh ip int br | ex unass register: sh_ip_int_br_result -name: Debug registered var debug: var=sh_ip_int_br_result.stdout_lines После чего результатом работы станет следующее: SSH password: PLAY [Run show commands on routers] *************************************************** TASK [run sh ip int br] *************************************************************** changed: [192.168.100.1] changed: [192.168.100.2] changed: [192.168.100.3] TASK [Debug registered var] *********************************************************** ok: [192.168.100.1] => { “sh_ip_int_br_result.stdout_lines”: [ “”, “Interface IP-Address OK? Method Status Protocol”, “Ethernet0/0 192.168.100.1 YES NVRAM up up “, “Ethernet0/1 192.168.200.1 YES NVRAM up up “, “Loopback0 10.1.1.1 YES manual up up “ ] } ok: [192.168.100.2] => { “sh_ip_int_br_result.stdout_lines”: [ “”, “Interface IP-Address OK? Method Status Protocol”, “Ethernet0/0 192.168.100.1 YES NVRAM up up “, “Ethernet0/2 192.168.200.1 YES NVRAM administratively down down “, “Loopback0 10.1.1.1 YES manual up up “ ] } ok: [192.168.100.3] => { “sh_ip_int_br_result.stdout_lines”: [ “”, “Interface IP-Address OK? Method Status Protocol”, “Ethernet0/0 192.168.100.3 YES NVRAM up up “, “Ethernet0/2 192.168.200.1 YES NVRAM administratively down down “, “Loopback0 10.1.1.1 YES manual up up “, “Loopback10 10.255.3.3 YES manual up up “ ] } PLAY RECAP **************************************************************************** 192.168.100.1 : ok=2 changed=1 unreachable=0 failed=0 192.168.100.2 : ok=2 changed=1 unreachable=0 failed=0 192.168.100.3 : ok=2 changed=1 unreachable=0 failed=0 Вместо заключения Можно ещё долго приводить примеры работы в системе, но ещё один факт так сказать "вишенка на торте". К плюсам Ansible следует отнести и то, что заданную команду система может выполнять практически до бесконечности. Пока не наступит требуемый результат трансформации не прекратятся. Пользователю можно не беспокоиться - программа сама всё сделает за Вас, а Вы можете заниматься другими делами.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59