По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Хотим показать два простых способа для ограничения набора платных номеров (международных и междугородних направлений) на Asterisk. Зачем это нужно? Часто в компаниях есть определённый тип пользователей, которым, для выполнения своих служебных обязанностей, не требуется совершать исходящие звонки на внешние направления. Они принимают входящие вызовы от внешних абонентов и могут пользоваться внутрикорпоративной связью. Именно такую задачу мы решим. Будем считать, что ограничить набор номеров платных направлений нужно для внутренних номеров маской 3XX. Способ 1 Для решения вышеописанной задачи первым способом будем пользоваться графическим интерфейсом FreePBX 13 и уже знакомым нам модулем Custom Context. Открываем вкладку Connectivity → Custom Context и нажимаем Add Context: Задаём новому контексту название и понятное описание и жмём Submit, после чего перед нами открывается список правил, которыми мы будем манипулировать, чтобы запретить доступ к исходящим направлениям. Дальнейшие действия рекомендуем воспроизводить в точности по следующему порядку: Выбираем опцию Allow напротив строки Set All To; Выбираем опцию Deny Rules напротив строки ENTIRE Basic Internal Dialplan; В окне Deny Rules указываем шаблон (dial pattern) внешних номеров, которые хотим запретить. В нашем случае это - 810Z. – международный и 8495XXXXXXX, 8499XXXXXXX, 89XXXXXXXX - звонки по городу и мобильные номера. Узнайте как принимает номер ваш провайдер, чтобы указать правильный шаблон. Должно получиться вот так: 4. Далее прокручиваем данное меню вниз и напротив строки ALL OUTBOUND ROUTES также выбираем Deny Rules, после чего жмём Submit и Apply Config Теперь осталось только применить созданное правило на нужных Extension’ах. Для этого открываем модуль Extensions ищем внутренний номер, которому необходимо запретить совершать международные и междугородние звонки (например 310), открываем вкладку Other и напротив строки Custom Context выбираем наш новый контекст. Нажимаем Submit, Apply Config и готово теперь с данного внутреннего номера “наружу” не позвонить. Если таких внутренних номеров много, то можно выгрузить csv файл со всеми их настройками с помощью модуля Bulk Handler и указать так контекст вручную, а затем импортировать новый файл. Способ 2 Для решения задачи вторым способом, нам придётся немного изменить правила в конфигурационных файлах. Для этого открываем /etc/asterisk/extensions_custom.conf любым редактором, ищем контекст [from-internal-custom] и вносим туда следующую запись: [from-internal-custom] exten => _8X./3XX,1,NoOp("${CALLERID} long-distance call detected") exten => _8X./3XX,n,Playback(feature-not-avail-line,noanswer) exten => _8X./3XX,n,Hangup() Таким образом, мы запретили набор номеров междугородних и международных направлений с выходом через 8 для всех внутренних номеров с маской 3XX.
img
Apache – это часть стека LAMP программного обеспечения для Linux (Linux, Apache, MySQL, PHP). Apache позволяет открывать веб-страницы людям, просматривающим ваш сайт. Сервер предоставляет доступ для посещения вашего веб-сайта и ведет журнал доступа. Эти записи, лог-файлы, могут оказаться ценным источником информации о вашем веб-сайте, его использовании и его аудитории. В данной статье вы узнаете, как просматривать лог-файлы журнала доступа Apache. Просмотр журналов доступа Apache Использование cPanel для загрузки необработанных файлов регистрации доступа Если вы вошли на веб-сервер с помощью cPanel, то вы можете загрузить журналы доступа Apache через графический интерфейс. Найдите раздел с надписью «Metrics». Нажмите «Raw Access». Если включено архивирование, то необработанные файлы журналов Apache можно загрузить внизу страницы. Они будут выглядеть как стандартные гиперссылки, промаркированные с учетом конструкции веб-сайта, которым вы управляете. При нажатии на гиперссылку вам будет предложено сохранить или открыть файл. Эти лог-файлы сжаты при помощи gzip, поэтому, если ваша систему отлична от Linux, то вам могут понадобиться дополнительные инструменты для распаковки. Сохранить файл вы можете в любую папку. Найдите файл в своей ОС, затем щелкните на него правой кнопкой мыши и выберите extract(извлечь). После этого должен появиться новый файл без расширения .gz. Щелкните правой кнопкой мыши и выберите edit (изменить), чтобы открыть файл в любом текстовом редакторе и просмотреть его содержимое. Использование команд терминала для отображения журналов локального доступа Если вы работаете на компьютере, на котором установлен Apache, или если вы вошли в систему удаленно, то вы можете использовать терминал для отображения и фильтрации содержимого журналов доступа. По умолчанию вы можете найти лог-файл по следующим путям: /var/log/apache/access.log /var/log/apache2/access.log /etc/httpd/logs/access.log Чтобы перемещаться по вашей системе в поисках журналов, используйте графический интерфейс или терминал с командой cd. Шаг 1: Отображение последних 100 записей журнала доступа Введите в окно терминала следующую команду: sudo tail -100 /var/log/apache2/access.log Команда tail указывает на то, что необходимо прочитать последнюю часть файла, а команда -100 – что нужно отобразить 100 записей. Последняя часть команды, /var/log/apache2/access.log, указывает, где искать лог-файл. Если ваш лог-файл имеет другое расположение, то обязательно укажите верный путь. Шаг 2: отображение записей определенного типа из журнала доступа Иногда может потребоваться отобразить в журнале только записи определенного типа. Вы можете воспользоваться командой grep для фильтрации отчета по ключевым словам. Например, введите в терминал следующую команду: sudo grep GET /var/log/apache2/access.log Как и предыдущая команда, она обращается к файлу /var/log/apache2/access.log, чтобы отобразить содержимое журнала доступа. Команда grep указывает на то, что отобразить нужно только записи с запросом GET. Эту команду можно заменить на любые другие команды Apache. Например, если вы хотите отследить доступ к изображениям в формате .jpg, то вы можете заменить GET на .jpg. Как и в предыдущей команде, следите за тем, чтобы был указан фактический путь к лог-файлу вашего сервера. Просмотр журнала ошибок Apache Помимо журнала доступа вы можете просматривать журнал ошибок, используя ранее упомянутые команды терминала. Введите в терминал следующую команду: sudo tail -100 /var/log/apache2/error.log Если ваш лог-файл доступа был расположен в другой папке, то и лог-файл ошибок будет в той же папке. Проверьте, что вы верно указали путь до файла. Как читать логи в Apache Когда вы открываете лог-файл доступа впервые, то внутренний вид вас может потрясти. Там находится множество информации о HTTP-запросах, а некоторые текстовые редакторы (и терминал) еще могут переносить часть текста на следующую строку, что может затруднять чтение файла. Однако, несмотря на это, каждая информация отображается в определенном порядке. Традиционный формат отображения лог-файла доступа: "%h %l %u %t "%r" %>s %b "%{Referer}i" "%{User-agent}i"" Это код для наиболее общих параметров в каждой строке лог-файла. Каждый знак % соответствует определенному фрагменту информации в журнале: %h – IP-адрес клиента (источника запроса на доступ). %l – следующая запись может быть просто дефисом – это означает, что информация не была получена. Это результат проверки identd на стороне клиента. %u – идентификатор пользователя клиентской стороны, если для запроса доступа требуется HTTP-аутентификация. %t – временная метка входящего запроса. %r – использованная строка запроса. Здесь речь идет о методе http (GET, POST, HEAD и т.д.), пути к тому, что было запрошено, и используемом протоколе http. %>s – код состояния, возвращенный сервером клиенту. %b – размер запрошенного ресурса. «%{Referer}i» - указывает на то, как был получен доступ, путем перехода по ссылке на другом веб-сайте или другими способами, с помощью которых клиент был направлен на вашу страницу. «%{User-agent}i» - сообщает вам информацию об объекте, совершающем запрос, например, о веб-браузере, операционной системе, источнике веб-сайта (если это робот) и т.д. При прочтении строки в вашем лог-файле каждая запись может быть расшифрована по схеме выше. Если той или иной информации нет, то на ее месте будет стоят дефис. Если вы работаете на предварительно сконфигурированном сервере, то в лог-файле может быть больше или меньше информации. Вы также можете создать свой собственный формат журнала с помощью пользовательского программного модуля. Дополнительную информацию о форматах журналов декодирования можно найти тут Как использовать данные в лог-файлах Apache Анализ журнала Apache дает возможность наблюдать за способами взаимодействия клиентов с вашим сайтом. Например, вы можете посмотреть временную метку, чтобы выяснить, сколько поступает запросов на доступ в час, чтобы определить шаблоны трафика. Вы можете посмотреть на user-agent, чтобы узнать, входят ли определенные пользователи на веб-сайт с целью доступа к базе данных или создания контента. Вы также можете отлеживать неудачные попытки аутентификации, чтобы выявлять различные виды кибератак на вашу систему. Журнал ошибок Apache можно использовать аналогичным образом. Часто его просто используют для того, что посмотреть сколько генерируется ошибок 404. Ошибка 404 возникает, когда клиент запрашивает отсутствующий ресурс, и это может помочь вам распознать неработающие ссылки или другие ошибки на странице. Помимо этого, его также можно использовать для поиска ошибок конфигурации или даже предупреждений о потенциальных проблемах с сервером. Заключение В данной статье были представлены методы извлечения данных для просмотра лог-файлов доступа Apache. Файл access.log – отличный вариант для того, чтобы проанализировать то, как клиенты взаимодействуют с вашим сервером. А файл error.log может помочь вам устранить проблемы с вашим веб-сайтом.
img
Девятая часть тут. Ни одна среда передачи данных не может считаться совершенной. Если среда передачи является общей, как радиочастота (RF), существует возможность возникновения помех или даже столкновений дейтаграмм. Это когда несколько отправителей пытаются передать информацию одновременно. Результатом является искаженное сообщение, которое не может быть понято предполагаемым получателем. Даже специализированная среда, такая как подводный оптический кабель типа point-to-point (световолновой), может испытывать ошибки из—за деградации кабеля или точечных событий-даже, казалось бы, безумных событий, таких как солнечные вспышки, вызывающие излучение, которое, в свою очередь, мешает передаче данных по медному кабелю. Существует два ключевых вопроса, на которые сетевой транспорт должен ответить в области ошибок: Как можно обнаружить ошибки при передаче данных? Что должна делать сеть с ошибками при передаче данных? Далее рассматриваются некоторые из возможных ответов на эти вопросы. Обнаружение ошибок Первый шаг в работе с ошибками, независимо от того, вызваны ли они отказом носителя передачи, повреждением памяти в коммутационном устройстве вдоль пути или любой другой причиной, заключается в обнаружении ошибки. Проблема, конечно, в том, что когда получатель изучает данные, которые он получает, нет ничего, с чем можно было бы сравнить эти данные, чтобы обнаружить ошибку. Проверка четности — это самый простой механизм обнаружения. Существуют два взаимодополняющих алгоритма проверки четности. При четной проверке четности к каждому блоку данных добавляется один дополнительный бит. Если сумма битов в блоке данных четная—то есть если в блоке данных имеется четное число битов 1, то дополнительный бит устанавливается равным 0. Это сохраняет четное состояние четности блока. Если сумма битов нечетна, то дополнительный бит устанавливается равным 1, что переводит весь блок в состояние четной четности. Нечетная четность использует ту же самую дополнительную битную стратегию, но она требует, чтобы блок имел нечетную четность (нечетное число 1 бит). В качестве примера вычислите четную и нечетную четность для этих четырех октетов данных: 00110011 00111000 00110101 00110001 Простой подсчет цифр показывает, что в этих данных есть 14 «1» и 18 «0». Чтобы обеспечить обнаружение ошибок с помощью проверки четности, вы добавляете один бит к данным, либо делая общее число «1» в недавно увеличенном наборе битов четным для четной четности, либо нечетным для нечетной четности. Например, если вы хотите добавить четный бит четности в этом случае, дополнительный бит должен быть установлен в «0». Это происходит потому, что число «1» уже является четным числом. Установка дополнительного бита четности на «0» не добавит еще один «1» и, следовательно, не изменит, является ли общее число «1» четным или нечетным. Таким образом, для четной четности конечный набор битов равен: 00110011 00111000 00110101 00110001 0 С другой стороны, если вы хотите добавить один бит нечетной четности к этому набору битов, вам нужно будет сделать дополнительный бит четности «1», так что теперь есть 15 «1», а не 14. Для нечетной четности конечный набор битов равен: 00110011 00111000 00110101 00110001 1 Чтобы проверить, были ли данные повреждены или изменены при передаче, получатель может просто отметить, используется ли четная или нечетная четность, добавить число «1» и отбросить бит четности. Если число «1» не соответствует используемому виду четности (четное или нечетное), данные повреждены; в противном случае данные кажутся такими же, как и первоначально переданные. Этот новый бит, конечно, передается вместе с оригинальными битами. Что произойдет, если сам бит четности каким-то образом поврежден? Это на самом деле нормально - предположим, что даже проверка четности на месте, и передатчик посылает 00110011 00111000 00110101 00110001 0 Приемник, однако, получает 00110011 00111000 00110101 00110001 1 Сам бит четности был изменен с 0 на 1. Приемник будет считать «1», определяя, что их 15. Поскольку даже проверка четности используется, полученные данные будут помечены как имеющие ошибку, даже если это не так. Проверка на четность потенциально слишком чувствительна к сбоям, но в случае обнаружения ошибок лучше ошибиться в начале. Есть одна проблема с проверкой четности: она может обнаружить только один бит в передаваемом сигнале. Например, если даже четность используется, и передатчик отправляет 00110011 00111000 00110101 00110001 0 Приемник, однако, получает 00110010 00111000 00110101 00110000 0 Приемник подсчитает число «1» и обнаружит, что оно равно 12. Поскольку система использует четную четность, приемник будет считать данные правильными и обработает их в обычном режиме. Однако оба бита, выделенные жирным шрифтом, были повреждены. Если изменяется четное число битов в любой комбинации, проверка четности не может обнаружить изменение; только когда изменение включает нечетное число битов, проверка четности может обнаружить изменение данных. Циклическая проверка избыточности (Cyclic Redundancy Check - CRC) может обнаруживать более широкий диапазон изменений в передаваемых данных, используя деление (а не сложение) в циклах по всему набору данных, по одной небольшой части за раз. Работа с примером - лучший способ понять, как рассчитывается CRC. Расчет CRC начинается с полинома, как показано на рисунке 1. На рис. 1 трехчленный многочлен x3 + x2 + 1 расширен, чтобы включить все члены, включая члены, предшествующие 0 (и, следовательно, не влияют на результат вычисления независимо от значения x). Затем эти четыре коэффициента используются в качестве двоичного калькулятора, который будет использоваться для вычисления CRC. Чтобы выполнить CRC, начните с исходного двоичного набора данных и добавьте три дополнительных бита (поскольку исходный полином без коэффициентов имеет три члена; следовательно, это называется трехбитной проверкой CRC), как показано здесь: 10110011 00111001 (оригинальные данные) 10110011 00111001 000 (с добавленными битами CRC) Эти три бита необходимы для обеспечения того, чтобы все биты в исходных данных были включены в CRC; поскольку CRC перемещается слева направо по исходным данным, последние биты в исходных данных будут включены только в том случае, если эти заполняющие биты включены. Теперь начните с четырех битов слева (потому что четыре коэффициента представлены в виде четырех битов). Используйте операцию Exclusive OR (XOR) для сравнения крайних левых битов с битами CRC и сохраните результат, как показано здесь: 10110011 00111001 000 (дополненные данные) 1101 (Контрольные биты CRC) ---- 01100011 00111001 000 (результат XOR) XOR'инг двух двоичных цифр приводит к 0, если эти две цифры совпадают, и 1, если они не совпадают. Контрольные биты, называемые делителем, перемещаются на один бит вправо (некоторые шаги здесь можно пропустить), и операция повторяется до тех пор, пока не будет достигнут конец числа: 10110011 00111001 000 1101 01100011 00111001 000 1101 00001011 00111001 000 1101 00000110 00111001 000 110 1 00000000 10111001 000 1101 00000000 01101001 000 1101 00000000 00000001 000 1 101 00000000 00000000 101 CRC находится в последних трех битах, которые были первоначально добавлены в качестве заполнения; это "остаток" процесса разделения перемещения по исходным данным плюс исходное заполнение. Получателю несложно определить, были ли данные изменены, оставив биты CRC на месте (в данном случае 101) и используя исходный делитель поперек данных, как показано здесь: 10110011 00111001 101 1101 01100011 00111001 101 1101 00001011 00111001 101 1101 00000110 00111001 101 110 1 00000000 10111001 101 1101 00000000 01101001 101 1101 00000000 00000001 101 1 101 00000000 00000000 000 Если данные не были изменены, то результат этой операции всегда должен быть равен 0. Если бит был изменен, результат не будет равен 0, как показано здесь: 10110011 00111000 000 1101 01100011 00111000 000 1101 00001011 00111000 000 1101 00000110 00111000 000 110 1 00000000 10111000 000 1101 00000000 01101000 000 1101 00000000 00000000 000 1 101 00000000 00000001 000 CRC может показаться сложной операцией, но она играет на сильных сторонах компьютера—бинарных операциях конечной длины. Если длина CRC задается такой же, как у стандартного небольшого регистра в обычных процессорах, скажем, восемь бит, вычисление CRC-это довольно простой и быстрый процесс. Проверка CRC имеет то преимущество, что она устойчива к многобитовым изменениям, в отличие от проверки четности, описанной ранее. Исправление ошибок Однако обнаружение ошибки — это только половина проблемы. Как только ошибка обнаружена, что должна делать транспортная система? Есть, по существу, три варианта. Транспортная система может просто выбросить данные. В этом случае транспорт фактически переносит ответственность за ошибки на протоколы более высокого уровня или, возможно, само приложение. Поскольку некоторым приложениям может потребоваться полный набор данных без ошибок (например, система передачи файлов или финансовая транзакция), у них, вероятно, будет какой-то способ обнаружить любые пропущенные данные и повторно передать их. Приложения, которые не заботятся о небольших объемах отсутствующих данных (например, о голосовом потоке), могут просто игнорировать отсутствующие данные, восстанавливая информацию в приемнике, насколько это возможно, с учетом отсутствующей информации. Транспортная система может подать сигнал передатчику, что произошла ошибка, и позволить передатчику решить, что делать с этой информацией (как правило, данные при ошибке будут повторно переданы). Транспортная система может выйти за рамки отбрасывания данных, включив достаточное количество информации в исходную передачу, определить, где находится ошибка, и попытаться исправить ее. Это называется Прямой коррекцией ошибок (Forward Error Correction - FEC). Коды Хэмминга, один из первых разработанных механизмов FEC, также является одним из самых простых для объяснения. Код Хэмминга лучше всего объяснить на примере - для иллюстрации будет использована таблица 1. В Таблице № 1: Каждый бит в 12-битном пространстве, представляющий собой степень двух (1, 2, 4, 6, 8 и т. д.) и первый бит, устанавливается в качестве битов четности. 8-битное число, которое должно быть защищено с помощью FEC, 10110011, распределено по оставшимся битам в 12-битном пространстве. Каждый бит четности устанавливается равным 0, а затем четность вычисляется для каждого бита четности путем добавления числа «1» в позиции, где двоичный бит имеет тот же бит, что и бит четности. В частности: P1 имеет набор крайних правых битов в своем битовом номере; другие биты в числовом пространстве, которые также имеют набор крайних правых битов, включены в расчет четности (см. вторую строку таблицы, чтобы найти все позиции битов в номере с набором крайних правых битов). Они указаны в таблице с X в строке P1. Общее число «1»-нечетное число, 3, поэтому бит P1 устанавливается равным 1 (в этом примере используется четная четность). P2 имеет второй бит из правого набора; другие биты в числовом пространстве, которые имеют второй из правого набора битов, включены в расчет четности, как указано с помощью X в строке P2 таблицы. Общее число «1»-четное число, 4, поэтому бит P2 установлен в 0. P4 имеет третий бит из правого набора, поэтому другие биты, которые имеют третий бит из правого набора, имеют свои номера позиций, как указано с помощью X в строке P3. В отмеченных столбцах есть нечетное число «1», поэтому бит четности P4 установлен на 1. Чтобы определить, изменилась ли какая-либо информация, получатель может проверить биты четности таким же образом, как их вычислял отправитель; общее число 1s в любом наборе должно быть четным числом, включая бит четности. Если один из битов данных был перевернут, приемник никогда не должен найти ни одной ошибки четности, потому что каждая из битовых позиций в данных покрыта несколькими битами четности. Чтобы определить, какой бит данных является неправильным, приемник добавляет позиции битов четности, которые находятся в ошибке; результатом является положение бита, которое было перевернуто. Например, если бит в позиции 9, который является пятым битом данных, перевернут, то биты четности P1 и P8 будут ошибочными. В этом случае 8 + 1 = 9, так что бит в позиции 9 находится в ошибке, и его переворачивание исправит данные. Если один бит четности находится в ошибке—например, P1 или P8—то это тот бит четности, который был перевернут, и сами данные верны. В то время как код Хэмминга гениален, есть много битовых шаблонов-перевертышей, которые он не может обнаружить. Более современный код, такой как Reed-Solomon, может обнаруживать и исправлять более широкий диапазон условий ошибки, добавляя меньше дополнительной информации в поток данных. Существует большое количество различных видов CRC и кодов исправления ошибок, используемых во всем мире связи. Проверки CRC классифицируются по количеству битов, используемых в проверке (количество битов заполнения или, точнее, длины полинома), а в некоторых случаях - по конкретному применению. Например, универсальная последовательная шина использует 5-битный CRC (CRC-5-USB); Глобальная система мобильной связи (GSM), широко используемый стандарт сотовой связи, использует CRC-3-GSM; Мультидоступ с кодовым разделением каналов (CDMA), другой широко используемый стандарт сотовой связи, использует CRC-6-CDMA2000A, CRC-6-CDMA2000B и CRC-30; и некоторые автомобильные сети (CAN), используемые для соединения различных компонентов в автомобиле, используют CRC-17-CAN и CRC-21-CAN. Некоторые из этих различных функций CRC являются не единственной функцией, а скорее классом или семейством функций со многими различными кодами и опциями внутри них.
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59