По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Зачастую можно столкнуться с задачами, когда необходимо обеспечить доступ к внутренним корпоративным (или домашним) ресурсам из Интернета. В этом случае, нужно выполнить, так называемый "проброс портов". Что это такое, зачем это нужно и как настраивать на примере роутера Mikrotik 951Ui-2HnD – расскажем в данной статье. /p> Как это работает? Давайте представим себе следующую ситуацию – у нас есть корпоративная сеть, в которой пока ещё локально разворачивается сервер IP-телефонии на базе Asterisk, управляется он при помощи графической оболочки FreePBX. Задача состоит в том, чтобы предоставить возможность администратору сервера управлять им из Интернета. Итак, имеем следующую схему: Для начала остановимся на понятии “проброс порта”. Проброс порта – это функционал маршрутизаторов, поддерживающих NAT, который позволяет получить доступ к ресурсам локальной сети, из Интернета по средствам перенаправления трафика определенных портов с внешнего адреса маршрутизатора на внутренний адрес хоста в локальной сети. Иными словами, мы должны настроить на роутере правило, в котором при поступлении TCP запроса на внешний адрес, в данном случае 35.135.235.15 и определенный порт, например 23535, открывался бы доступ к интерфейсу FreePBX, который в данным момент доступен только в локальной сети по адресу 192.168.1.100 и, соответственно на порту 80 (HTTP). Настройка Перейдём к настройке. Заходим на адрес нашего роутера Mikrotik 951Ui-2HnD, видим следующее окно: Скачиваем приложение WinBox. Вводим учётные данные и подключаемся. По умолчанию логин - admin, пароль - пустой. Если у вас уже настроены логин и пароль, то укажите их. Далее необходимо создать NAT – правило. Для этого переходим по следующему пути – на панели управления слева выбираем IP → Firewall → NAT Открывается следующее окно: Нажимаем на +, открывается страница добавления нового NAT- правила. Задаём следующие параметры: Chain → dstnat - направление запроса из внешней сети во внутреннюю. Protocol → tcp, поскольку в нашем случае нужно предоставить доступ к HTTP страничке. Dst.Port → 23535 - это тот самый порт назначения, на который будет отправлять запрос из вне на получение доступа к FreePBX. In.Interface → all ethernet - входной интерфейс. Это интерфейс, которым роутер смотрит в Интернет и на котором он будет прослушивать указанный выше порт. Должно получиться вот так: На вкладках Advanced и Extra настраиваются расширенные опции, такие как лимит по битрейту, политика IPsec, время, в течение которого правило будет активно и так далее. Переходим на вкладку Action и объясняем роутеру, какие действия он должен выполнить при поступлении запроса на указанный порт. Выбираем Action → netmap, то есть трансляция с одного адреса на другой. To Addresses → 192.168.1.100, то есть адрес нашёго FreePBX. И последнее - To Ports → 80, то есть запрос на HTTP порт. Должно получиться так: Далее нажимаем OK и правило готово. Теперь если вбить в адресной строке браузера сокет 35.135.235.15:23535 то мы попадем на страницу авторизации FreePBX.
img
Целью статьи является рассмотреть вопросы разбития жестких дисков и создание на разделах различных файловых систем в Linux. Будет рассмотрено управление дисками MBR и GPT. Использование утилиты mkfs. Основные утилиты для работы с разделами жестких дисков и создания файловых систем: fdisk, gdisk, parted, gparted, mkfs, mkswap. Для работы с жесткими дисками, такими операциями как изменение размеров логических разделов, разбиение жестких дисков, создание файловых таблиц на разделах жестких дисков требуются права суперпользователя. Переключится в данных режим из режима обычного пользователя можно командой sudo –s и введя пароль. Утилита fdisk , позволяет нам проводить различные манипуляции с разделами жесткого диска. Команда fdisk –l, мы можем посмотреть какие разделы у нас есть на жестком диске. И так вводим команду fdisk –l и видим у на 3 физических жестких диска /dev/sda, /dev/sdb, /dev/sdc соответствующих размеров. Нас интересует раздел /dev/sdc/ на 10 GB с которым мы будем производить манипуляции. Далее сделаем разбивку и создадим логические разделы. fdisk /dev/sdc Сразу получаем предупреждение, что раздел не содержит ни одного опознанного раздела. Создадим новые разделы. Поделим на 2 части. У нас получится следующее. Как мы можем увидеть создались 2 раздела и имеют ID 83, т.е. Linux раздел по умолчанию. Теперь давайте поменяем тип раздела. Это сделать можно просто в меню выбираем t – смена раздела. Выбираем номер, например, 2 и нажимаем L, чтобы посмотреть hex коды, соответствующие разным типам. Изменим тип раздела Linux на swap раздел подкачки. И теперь мы можем увидеть введя команду p. У нас изменился тип раздела на раздел подкачки. Обычно данные раздел используется, когда не хватает оперативной памяти у машины. Теперь необходимо записать производимые изменения командой w. После ввода данной команды диски синхронизируются и таблица разделов изменена. После этого введя команду fdisk –l мы можем убедиться, что действительно появились разделы. Для того, чтобы этот раздел действительно стал работать, как раздел подкачки, его необходимо отформатировать, как раздел подкачки. Для этого есть команда специальная mkswap /dev/sdc2. Указываем команду и раздел, который должен быть размечен. После команды mkswap раздел размечается и теперь его необходимо включить swapon /dev/sdc2. Для того, чтобы посмотреть какие разделы подкачки используются используем команду swapon –s. Для выключения раздела подкачки можно использовать обратную команду swapoff /dev/sdc2. На самом деле, как мы убедились разделы подкачки создавать достаточно просто. Если не хватает оперативки, то пере разбили, отформатировали и включили. Теперь поработает с первым разделом. Будем использовать команду mkfs. man mkfs В описании утилиты сказано, что данная утилита, строит Linux файловую систему. У данной утилиты, очень большое количество ключей. Использую данную утилиты мы можем отформатировать логический раздел в старую файловую систему ext2, с помощью команды mkfs –t ext2 /dev/sdc1. А затем переформатировать в более новую ext3. Файловые системы различаются тем, что более новая файловая система журналируемая. Т.е. ведется журнал изменений происходящего на данной файловой системе и в случае чего-нибудь мы можем восстановить или откатить изменения. Еще более новая файловая система ext4. Отличия данной файловой системы от предыдущей в том, что она может работать с большими размерами жестких дисков, может в себе хранить большие размеры файлов, намного меньше фрагментация. В случае если мы хотим использовать, какие-то более экзотические файловые системы, то нам необходимо скачать соответствующую утилиту. Например, если мы хотим использовать файловую систему xfs. Если мы попробуем отформатировать mkfs –t xfs /dev/sdc1 то мы получим ошибку. Попробуем поискать в кэше необходимый пакет apt-cache search xfs. Находим необходимый пакет. Как мы можем видеть это утилита для управления XFS файловой системой. Следовательно, необходимо установить данный пакет, и мы сможем отформатировать в xfs файловую систему. Устанавливаем apt-get install xfsprogs. После установки пробуем отформатировать в xfs. Учитывая то, что мы уже форматировали в файловую систему ext4, нам необходимо команду на форматирование запускать с ключом –f. Получаем в следующем виде: mkfs –t xfs –f /dev/sdc1 Теперь думаю интересно будет посмотреть, как сделать данный раздел рабочим под Windows операционную систему. Возвращаемся обратно в редактирование логических разделов fdisk /dev/sdc и говорим , что мы ходим поменять тип первого нашего раздела с помощью команды t. Далее выбираем метку, которую понимает операционная система Windows, это FAT/FAT16/FAT32/NTFS. Например, NTFS id 86. Изменили. В этом можно убедится выведя таблицу с помощью команды p. После изменения типа логического раздела, не забываем записать изменения с помощью команды w. Далее необходимо логический раздел отформатировать mkfs -t ntfs /dev/sdc1. Следовательно, как мы видим утилита mkfs прекрасно форматирует логические разделы в разные файловые системы, а если необходима специфическая файловая система всегда можно доставить недостающие компоненты и все будет работать. Если посмотреть мануал по fdisk, то мы увидим, что он не умеет работать с дисками GPT и не может работать с большими разделами, только с MBR. Как известно в современных ПК уже используется UEFI, которая работает с GPT. А как следствие мы можем сделать вывод, что fdisk не сможет работать с дисками размер которых более 2 ТБ. Для работы с большими дисками можно использовать другую программу gdisk. man gdisk Как можно прочитать в описании gdisk – это интерактивный манипулятор для работы с gpt. Он работает практически также как и fdisk, только для начала необходимо переразбить жесткий диск из MBR в GPT. gdisk /dev/sdc Нажав на знак вопроса получим небольшую подсказку. И нажимаем команду o для создания нового пустого GPT. Получаем вот такое предупреждение. Которое говорит о том, что будет создан новый GPT и создаст маленький новый защищенный MBR для совместимости со старыми системами, иначе старые системы будут затирать GPT. С помощью команды p можно посмотреть список логических разделов, а с помощью команды w записать изменения. Разделы в данной программе создаются аналогично fdisk. Посмотрим еще одну утилиту parted. man parted Интересная программа имеющая больший функционал, чем fdisk и gdisk. Умеет работать с дисками более 2 ТБ, умеет изменять разделы на горячую, может создавать разделы сразу с файловой системой, искать и восстанавливать разделы на жестком диске. Команда parted –l покажет информацию по подключенным жестким дискам, типам разделов и логическим разделам. Заходим в редактирование жесткого диска parted /dev/sdc и набираем слово help. Получаем достаточно справку с опциями. У данной утилиты есть графический интерфейс, если вы работаете с GUI. Можно установить через apt-get install gparted.
img
Продолжаем рассказывать про механизмы QoS (Quality of Service) . Мы уже рассказаывали про то, какие проблемы могут быть в сети и как на них может повлиять QoS. В этой статье мы поговорим про механизмы работы QoS. Механизмы QoS В связи с тем, что приложения могут требовать различные уровни QoS, возникает множество моделей и механизмов, чтобы удовлетворить эти нужды. Рассмотрим следующие модели: Best Effort –негарантированная доставка используется во всех сетях по умолчанию. Положительная сторона заключается в том, что эта модель не требует абсолютно никаких усилий для реализации. Не используются никакие механизмы QoS, весь трафик обслуживается по принципу “пришел первым – обслужили первым”. Такая модель не подходит для современных сетевых сред; Integrated Services (IntServ) – эта модель интегрированного обслуживания использует метод резервирования. Например, если пользователь хотел сделать VoIP вызов 80 Кбит/с по сети передачи данных, то сеть, разработанная исключительно для модели IntServ, зарезервировала бы 80 Кбит/с на каждом сетевом устройстве между двумя конечными точками VoIP, используя протокол резервирования ресурсов RSVP (Resource Reservation Protocol) . На протяжении звонка эти 80 Кбит/с будут недоступны для другого использования, кроме как для VoIP звонка. Хотя модель IntServ является единственной моделью, обеспечивающей гарантированную пропускную способность, она также имеет проблемы с масштабируемостью. Если сделано достаточное количество резервирований, то сеть просто исчерпает полосу пропускания; Differentiated Services (DiffServ) – модель дифференцированного обслуживания является самой популярной и гибкой моделью для использования QoS. В этой модели можно настроить каждое устройство так, чтобы оно могло использовать различные методы QoS, в зависимости от типа трафика. Можно указать какой трафик входит в определенный класс и как этот класс должен обрабатываться. В отличие от модели IntServ, трафик не является абсолютно гарантированным, поскольку сетевые устройства не полностью резервируют полосу пропускания. Однако DiffServ получает полосу, близкую к гарантированной полосе пропускания, в то же время решая проблемы масштабируемости IntServ. Это позволило этой модели стать стандартной моделью QoS; Инструменты QoS Сами механизмы QoS представляют собой ряд инструментов, которые объединяются для обеспечения уровня обслуживания, который необходим трафику. Каждый из этих инструментов вписывается в одну из следующих категорий: Классификация и разметка (Classification and Marking) - Эти инструменты позволяют идентифицировать и маркировать пакет, чтобы сетевые устройства могли легко идентифицировать его по мере пересечения сети. Обычно первое устройство, которое принимает пакет, идентифицирует его с помощью таких инструментов, как списки доступа (access-list), входящие интерфейсы или deep packet inspection (DPI), который рассматривает сами данные приложения. Эти инструменты могут быть требовательны к ресурсам процессора и добавлять задержку в пакет, поэтому после того как пакет изначально идентифицирован, он сразу помечается. Маркировка может быть в заголовке уровня 2 (data link), позволяя коммутаторам читать его и/или заголовке уровня 3 (network), чтобы маршрутизаторы могли его прочитать. Для второго уровня используется протокол 802.1P, а для третьего уровня используется поле Type of Service. Затем, когда пакет пересекает остальную сеть, сетевые устройства просто смотрят на маркировку, чтобы классифицировать ее, а не искать глубоко в пакете; Управление перегрузками (Congestion Management)– Перегрузки возникают, когда входной буфер устройства переполняется и из-за этого увеличивается время обработки пакета. Стратегии очередей определяют правила, которые маршрутизатор должен применять при возникновении перегрузки. Например, если интерфейс E1 WAN был полностью насыщен трафиком, маршрутизатор начнет удерживать пакеты в памяти (очереди), чтобы отправить их, когда станет доступна полоса пропускания. Все стратегии очередей направлены на то, чтобы ответить на один вопрос: “когда есть доступная пропускная способность, какой пакет идет первым?“; Избегание заторов (Congestion Avoidance) – Большинство QoS механизмов применяются только тогда, когда в сети происходит перегрузка. Целью инструментов избегания заторов является удаление достаточного количества пакетов несущественного (или не очень важного) трафика, чтобы избежать серьезных перегрузок, возникающих в первую очередь; Контроль и шейпинг (Policing and Shaping) – Этот механизм ограничивает пропускную способность определенного сетевого трафика. Это полезно для многих типичных «пожирателей полосы» в сети: p2p приложения, веб-серфинг, FTP и прочие. Шейпинг также можно использовать, чтобы ограничить пропускную способность определенного сетевого трафика. Это нужно для сетей, где допустимая фактическая скорость медленнее физической скорости интерфейса. Разница между этими двумя механизмами заключается в том, что shaping формирует очередь из избыточного трафика, чтобы выслать его позже, тогда как policing обычно сбрасывает избыточный трафик; Эффективность линков (Link Efficiency) – Эта группа инструментов сосредоточена на доставке трафика наиболее эффективным способом. Например, некоторые низкоскоростные линки могут работать лучше, если потратить время на сжатие сетевого трафика до его отправки (сжатие является одним из инструментов Link Efficiency); Механизмы Link Efficiency При использовании медленных интерфейсов возникают две основных проблемы: Недостаток полосы пропускания затрудняет своевременную отправку необходимого объема данных; Медленные скорости могут существенно повлиять на сквозную задержку из-за процесса сериализации (количество времени, которое маршрутизатору требуется на перенос пакета из буфера памяти в сеть). На этих медленных линках, чем больше пакет, тем дольше задержка сериализации; Чтобы побороть эти проблемы были разработаны следующие Link Efficiency механизмы: Сжатие полезной нагрузки (Payload Compression) – сжимает данные приложения, оправляемые по сети, поэтому маршрутизатор отправляет меньше данных, по медленной линии; Сжатие заголовка (Header Compression) – Некоторый трафик (например, такой как VoIP) может иметь небольшой объем данных приложения (RTP-аудио) в каждом пакете, но в целом отправлять много пакетов. В этом случае количество информации заголовка становится значимым фактором и часто потребляет больше полосы пропускания, чем данные. Сжатие заголовка решает эту проблему напрямую, устраняя многие избыточные поля в заголовке пакета. Удивительно, что сжатие заголовка RTP, также называемое сжатым транспортным протоколом реального времени (Compressed Real-time Transport Protocol - cRTP) уменьшает 40-байтовый заголовок до 2-4 байт!; Фрагментация и чередование (Link Fragmentation and Interleaving) - LFI решает проблему задержки сериализации путем измельчения больших пакетов на более мелкие части до их отправки. Это позволяет маршрутизатору перемещать критический VoIP-трафик между фрагментированными частями данных (которые называются «чередованием» голоса); Алгоритмы очередей Постановка в очереди (queuing) определяет правила, которые маршрутизатор должен применять при возникновении перегруженности. Большинство сетевых интерфейсов по умолчанию используют базовую инициализацию First-in, First-out (FIFO) . В этом методе сначала отправляется любой пакет, который приходит первым. Хотя это кажется справедливым, не весь сетевой трафик создается равным. Основная задача очереди - обеспечить, чтобы сетевой трафик, обслуживающий критически важные или зависящие от времени бизнес-приложения, отправлялся перед несущественным сетевым трафиком. Помимо очередности FIFO используются три первичных алгоритма очередности: Weighted Fair Queuing (WFQ)– WFQ пытается сбалансировать доступную полосу пропускания между всеми отправителями равномерно. Используя этот метод, отправитель с высокой пропускной способностью получает меньше приоритета, чем отправитель с низкой пропускной способностью; Class-Based Weighted Fair Queuing (CBWFQ) – этот метод массового обслуживания позволяет указать гарантированные уровни пропускной способности для различных классов трафика. Например, вы можете указать, что веб-трафик получает 20 процентов полосы пропускания, тогда как трафик Citrix получает 50 процентов пропускной способности (вы можете указать значения как процент или конкретную величину полосы пропускания). Затем WFQ используется для всего неуказанного трафика (остальные 30 процентов в примере); Low Latency Queuing (LLQ) - LLQ часто упоминается как PQ-CBWFQ, потому работает точно так же, как CBWFQ, но добавляется компонент приоритета очередей (Priority Queuing - PQ). Если вы указываете, что определенный сетевой трафик должен идти в приоритетную очередь, то маршрутизатор не только обеспечивает пропускную способность трафика, но и гарантирует ему первую полосу пропускания. Например, используя чистый CBWFQ, трафику Citrix может быть гарантированно 50% пропускной способности, но он может получить эту полосу пропускания после того, как маршрутизатор обеспечит некоторые другие гарантии трафика. При использовании LLQ приоритетный трафик всегда отправляется перед выполнением любых других гарантий. Это очень хорошо работает для VoIP, делая LLQ предпочтительным алгоритмом очередей для голоса; Существует много других алгоритмов для очередей, эти три охватывают методы, используемые большинством современных сетей
ВЕСЕННИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59